Heisingberg

Publications

Photon liquefaction in time

We provide a mechanism to imprint local temporal correlations in photon streams which have the same character as spatial correlations in liquids. Usual single-photon emitters correspond, in this picture, to a (temporal) gas while uncorrelated light is the ideal gas. We argue that good single-photon sources are those that exhibit such temporal liquid features, i.e., with a plateau for their short-time correlations (as opposed to a linear dependence) and oscillations at later times, which is a direct manifestation of photon time-ordering. We obtain general, closed-form analytical expressions for the second-order coherence function of a broad family of “liquid light” which can be arbitrarily correlated, though never completely crystallized.

Spatial correlations of vortex quantum states

We study spatial correlations of vortices in different quantum states or with Bose or Fermi statistics. This is relevant for both optical vortices and condensed-matter ones such as microcavity polaritons, or any platform that can prepare and image fields in space at the few-particle level. While we focus on this particular case for illustration of the formalism, we already reveal unexpected features of spatial condensation whereby bosons exhibit a bimodal distribution of their distances which places them farther apart than fermions in over 40% of the cases, or on the opposite conceal spatial correlations to behave like coherent states. Such experiments upgrade in the laboratory successful techniques in uncontrolled extreme environments (stars and nuclei).

Benchmarking the optimization optical machines with the planted solutions

We introduce universal, easy-to-reproduce generative models for the QUBO instances to differentiate the performance of the hardware/solvers effectively. Our benchmark process extends the well-known Hebb’s rule of associative memory with the asymmetric pattern weights. We provide a comprehensive overview of calculations conducted across various scales and using different classes of dynamical equations. Our aim is to analyze their results, including factors such as the probability of encountering the ground state, planted state, spurious state, or states falling outside the predetermined energy range. Moreover, the generated problems show additional properties, such as the easy-hard-easy complexity transition and complicated cluster structures of planted solutions. Our method establishes a prospective platform to potentially address other questions related to the fundamental principles behind device physics and algorithms for novel computing machines.

Classical vs Quantum annealing and manifold reduction in soft-spin minimizers of Ising Hamiltonians

We investigate the minimization of the Ising Hamiltonians, comparing the dynamics of semi- classical soft-spin models with quantum annealing. We systematically analyze how the energy landscape for the circulant couplings of a M¨obius graph evolves with increased annealing parameters. Our findings indicate that these semi-classical models face challenges due to a widening dimensionality landscape. To counteract this issue, we introduce the ‘manifold reduction’ method, which restricts the soft-spin amplitudes to a defined phase space region. Concurrently, quantum annealing demonstrates a natural capability to navigate the Ising Hamiltonian’s energy landscape due to its operation within the comprehensive Hilbert space. Our study indicates that physics-inspired or physics-enhanced optimizers will likely benefit from a blend of classical and quantum annealing techniques.

Macroscopic noise amplification by asymmetric dyads in non-Hermitian optical systems for generative diffusion models

A new generation of sensors, hardware random number generators, and quantum and classical signal detectors are exploiting strong responses to external perturbations or system noise. Here, we study noise amplification by asymmetric dyads in freely expanding non-Hermitian optical systems. We show that modifications of the pumping strengths can counteract bias from natural imperfections of the system’s hardware, while couplings between dyads lead to systems with non-uniform statistical distributions. Our results suggest that asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultra-fast random number generators. We propose that the integrated light emission from such asymmetric dyads can be efficiently used for an analog all-optical degenerative diffusion models of machine learning to overcome the digital limitations of such models in processing speed and energy consumption.

Published in Physical Review Letters

Beyond Digital: harnessing analog hardware for machine learning

A remarkable surge in utilizing large deep-learning models yields state-of-the-art results in a variety of tasks. Recent model sizes often exceed billions of parameters, underscoring the importance of fast and energy-efficient processing. The significant costs associated with training and inference primarily stem from the constrained memory bandwidth of current hardware and the computationally intensive nature of these models. Historically, the design of machine learning models has predominantly been guided by the operational parameters of classical digital devices. In contrast, analog computations have the potential to offer vastly improved power efficiency for both inference and training tasks. This work details several machine-learning methodologies that could leverage existing analog hardware infrastructures. To foster the development of analog hardware-aware machine learning techniques, we explore both optical and electronic hardware configurations suitable for executing the fundamental mathematical operations inherent to these models. Integrating analog hardware with innovative machine learning approaches may pave the way for cost-effective AI systems at scale.

Vector Ising Spin Annealer for Minimizing Ising Hamiltonians

We introduce the Vector Ising Spin Annealer (VISA), a framework in gain-based computing that harnesses light-matter interactions to solve complex optimization problems encoded in spin Hamiltonians. Traditional driven-dissipative systems often select excited states due to limitations in spin movement. VISA transcends these constraints by enabling spins to operate in a three-dimensional space, offering a robust solution to minimize Ising Hamiltonians effectively. Our comparative analysis reveals VISA’ s superior performance over conventional single-dimension spin optimizers, demonstrating its ability to bridge substantial energy barriers in complex landscapes. Through detailed studies on cyclic and random graphs, we show VISA’s proficiency in dynamically evolving the energy landscape with time-dependent gain and penalty annealing, illustrating its potential to redefine optimization in physical systems.

Coupling Light with Matter for Identifying Dominant Subnetworks

We present a novel light-matter platform that uses complex-valued oscillator networks, a form of physical neural networks, to identify dominant subnetworks and uncover indirect correlations within larger networks. This approach offers significant advantages, including low energy consumption, high processing speed, and the immediate identification of co- and counter-regulated nodes without post-processing. The effectiveness of this approach is demonstrated through its application to biological networks, and we also propose its applicability to a wide range of other network types.

Optimal quantum key distribution networks: capacitance versus security

The rate and security of quantum communications between users placed at arbitrary points of a quantum communication network depend on the structure of the network, on its extension and on the nature of the communication channels. In this work we propose a strategy for the optimization of trusted-relays based networks that intertwines classical network approaches and quantum information theory. Specifically, by suitably defining a quantum communication efficiency functional, we identify the optimal quantum communication connections through the network by balancing security and the quantum communication rate. The optimized network is then constructed as the network of the maximal quantum communication efficiency connections and its performance is evaluated by studying the scaling of average properties as functions of the number of nodes and of the network spatial extension.

Published in npj Quantum Information

Efficient Computation Using Spatial-Photonic Ising Machines: Utilizing Low-Rank and Circulant Matrix Constraints

We explore the potential of spatial-photonic Ising machines (SPIMs) to address computationally intensive Ising problems that employ low-rank and circulant coupling matrices. Our results indicate that the performance of SPIMs is critically affected by the rank and precision of the coupling matrices. By developing and assessing advanced decomposition techniques, we expand the range of problems SPIMs can solve, overcoming the limitations of traditional Mattis-type matrices. Our approach accommodates a diverse array of coupling matrices, including those with inherently low ranks, applicable to complex NP-complete problems. We explore the practical benefits of low-rank approximation in optimization tasks, particularly in financial optimization, to demonstrate the real-world applications of SPIMs. Finally, we evaluate the computational limitations imposed by SPIM hardware precision and suggest strategies to optimize the performance of these systems within these constraints.

Localization in Quantum Field Theory

We review the issue of localization in quantum field theory and detail the nonrelativistic limit. Three distinct localization schemes are examined: the Newton–Wigner, the algebraic quantum field theory, and the modal scheme. Among these, the algebraic quantum field theory provides a fundamental concept of localization, rooted in its axiomatic formulation. In contrast, the Newton–Wigner scheme draws inspiration from the Born interpretation, applying mainly to the nonrelativistic regime. The modal scheme, relying on the representation of single particles as positive frequency modes of the Klein–Gordon equation, is found to be incompatible with the algebraic quantum field theory localization.
This review delves into the distinctive features of each scheme, offering a comparative analysis. A specific focus is placed on the property of independence between state preparations and observable measurements in spacelike separated regions. Notably, the notion of localization in algebraic quantum field theory violates this independence due to the Reeh–Schlieder theorem. Drawing parallels with the quantum teleportation protocol, it is argued that causality remains unviolated. Additionally, we consider the nonrelativistic limit of quantum field theory, revealing the emergence of the Born scheme as the fundamental concept of localization. Consequently, the nonlocality associated with the Reeh–Schlieder theorem is shown to be suppressed under nonrelativistic conditions.

Published in Reviews in Physics