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We provide a mechanism to imprint local temporal correlations in photon streams which have
the same character as spatial correlations in liquids. Usual single-photon emitters correspond, in
this picture, to a (temporal) gas while uncorrelated light is the ideal gas. We argue that good
single-photon sources are those that exhibit such temporal liquid features, i.e., with a plateau for
their short-time correlations (as opposed to a linear dependence) and oscillations at later times,
which is a direct manifestation of photon time-ordering. We obtain general, closed-form analytical
expressions for the second-order coherence function of a broad family of “liquid light” which can be
arbitrarily correlated, though never completely crystallized.

A liquid is a condensed phase of matter whose defini-
tion at the microscopic level has been the subject of much
debate [1]. It consists of a dense, disordered assembly of
molecules exhibiting short-range order in space. Sim-
plest liquids like monatomic argon are well modeled as
jumbled closely packed spheres, with an ordering gov-
erned by integer multiples of the molecular diameter [2].
The molecular arrangement can be revealed experimen-
tally by diffracting X-rays or neutrons on the fluid [3].
The absence of a Bragg peak indicates that there is no
long-range order, but oscillations in the radial diffracted
intensities reveal short-range correlations, whereby each
molecule is locally attached to a shell of its surround-
ing neighbors, that remain free to move around and dis-
tort, but with more or less probability to be at a given
distance. A gas, in contrast, presents no such correla-
tions and has no short-range order. Two molecules still
cannot sit at the same position so there remains a de-
pletion of probabilities for close distances, but there are
no oscillations. In condensed-matter physics, this is de-
scribed by the structure factor, whose Fourier transform
provides the so-called pair-correlation function g(r) that
yields the probability of finding a molecule at a distance r
from another molecule, relative to an uncorrelated—i.e.,
ideal—gas [4]. All these correlations are in space.

Independently from these statistical considerations for
correlations of distances between molecules, quantum op-
tics arrived at the modern definition of quantum coher-
ence of light through correlations of photons in time [5].
This relies on the so-called second-order coherence func-
tion g(2)(τ), with a notation eerily reminiscent of the
condensed-matter case, although, again, there appears
to have no trace of any connection from one field to the
other. The g(2)(τ) function similarly quantifies the den-
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sity of two-photons separated by a time delay τ , as com-
pared to an uncorrelated (Poissonian or, as the optical
terminology goes, “coherent”) photon stream [6].
There are obvious differences between the two cases:

fluids are typically three-dimensional and their correla-
tions are in space, while quantum optics treats with one-
dimensional photon correlations in time. There are, how-
ever, more similarities than seems to have been previ-
ously appreciated. In quantum optics, the most stud-
ied type of quantum correlations is for single-photon
sources [7], with a suppression of two-photon coinci-
dences, i.e., two photons are never detected at exactly
the same time. This is not trivial since photons, being
bosons, have the natural tendency of exhibiting the oppo-
site behavior of bunching. Some order must be imbued
to the photon stream to fight their urge of coming to-
gether. The simplest way to achieve this is to recourse to
a two-level system σ, put in its excited state at a rate Pσ.
If the emitter has a radiative decay rate γσ, one finds for
its second-order coherence [8]:

g(2)(τ) = 1− exp
(
− (Pσ + γσ)τ

)
. (1)

This has coherence time Pσ + γσ with a linear τ
short-time loss of coherence from perfect two-photon
suppression g(2)(0) = 0 to uncorrelated emission
limτ→∞ g(2)(τ) = 1. Another paradigmatic type of
excitation is coherent excitation where a classical field
(typically a laser) drives resonantly the two-level sys-
tem, bringing it in another, much richer regime including
quantum dressing of the transitions and coherent scatter-
ing. In the high-driving regime [9]:

g(2)(τ) = 1− e−
3
4γστ

[
cosh

(γMτ

4

)
+

3γσ
γM

sinh
(γMτ

4

)]
(2)

where γM ≡
√

γ2
σ − (8Ωσ)2 is the Mollow (also known

as Rabi) splitting. In the low-driving, so-called Heitler
regime, when Ωσ ≪ γσ, the two-photon correlations
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takes the simpler form:

g(2)(τ) =
(
1− exp(−γστ)

)2
. (3)

In both cases (Eqs. (2) and (3)), there is a qualitative
change of the short-time correlations—where photon sup-
pression occurs—from a linear τ dependence in the inco-
herent case of Eq. (1) to a quadratic τ2 one for the coher-
ent cases. Such change from linear to power dependence
on time typically reflects a qualitative transformation of
the response of a system. For fluids, such dependencies
in an energy spectrum are for instance responsible for its
diffusive or superfluid character [10].

Although not still compelling at this point of our
discussion, we highlight that the two-photon correla-
tion function (1) exhibits oscillations when γM becomes
imaginary, i.e., when Ωσ > γσ/8, marking the onset
of Mollow Physics. In this case, they are understood
as Rabi oscillations of the two-level system which gets
dressed by the laser [11]. There is then a transition
from a monotonous g(2)(τ) = 1 − e−3γστ/4(1 + γστ/4)
at threshold to one featuring all-times oscillations:
g(2)(τ) = 1 − e−3γστ/4

(
cos(ΩMτ/4) + γσ

ωM
sin(ΩMτ/4)

)
with ΩM ≡

√
(8Ωσ)2 − γ2

σ a real parameter. The maxi-

mum g(2)(τM) = 1+exp(−3πγσ/ΩM) is obtained at τM =
4π/ΩM and thus is at most 2, in the limit of Ωσ → ∞.
Such oscillations are understood as Rabi oscillations of
the populations since in this case g(2)(τ) = n0(τ)/nss [12]
where n0(τ) is the dynamics of the system when starting
from its ground state and nss is the steady state popula-
tion, which is at most 1

2 for the coherently driven system
since stimulated emission prevents population inversion.

While such a Rabi interpretation is completely
valid [13–15], in the following, we shall argue that such
familiar oscillations are a particular case of a more gen-
eral trend, namely, photon liquefaction in time, by what
we mean temporal ordering of the photons similar to
that in space when a gas becomes liquid. The termi-
nology of “condensation” is more common to describe
gas-to-liquid transition, but given the predominance of
Bose condensation for bosons, we prefer here to refer to
that phenomenon with the alternative denomination of
“liquefaction” which, we highlight again, further occurs
in time. This approach is motivated by the notion of
a “perfect single photon source” [16] understood as a
source which suppresses photon coincidences not only at
exactly τ = 0, but over a temporal window large enough
or robust enough so that a physical detector will be re-
silient to the unavoidable time uncertainty associated to
the photodetection process. Such temporal limitations of
physical detectors were first highlighted for single-photon
observables by Eberly and Wódkiewicz [17] and later up-
graded to multiphoton detection by del Valle et al. [18].
For two-photon suppression, this results in photons cor-
relations of the type of Eqs. (2) and (3) to be much more
resilient to time-frequency uncertainties and, correspond-
ingly, to provide much better antibunching and less “ac-
cidental” coincidences, due to the flatter short-time cor-
relation τ2 [19]. In Ref. [16], it was shown that in the

mathematical idealization where the correlation is flat-
tened so much as to actually open a non-analytic time-
gap, i.e., forbidding completely two photons to be closer
than a given time tG, then oscillations ensue in g(2)(τ) as
a result of time-ordering, thus being a direct counterpart,
but in time, of the transition from a gas to a liquid. In
fact, for the case of a perfect, rigid time-gap, correlations
are precisely those, in space, for a system of hard rods,
as was first described by Prins [20] who also was the first
to derive the expression to compute diffracted intensities
from molecular arrangements.

This mathematically-perfect single photon source [16]
was analyzed with no underlying physical mechanism to
realize it. Here, we provide a broad class of photon
temporal liquids, based on a simple mechanism whereby
the excitation undergoes a cascade of transitions between
various states before ultimately emitting a photon. This
is particularly relevant for solid-state systems [21] where
the two-level system is implemented by an artificial atom
embedded in an environment which comes with various
intermediate states, shell structures, metastable states,
etc., which could even be controlled or ultimately engi-
neered [35]. We find the interesting result that even inco-
herent driving, insofar as it involves intermediate steps in
the cascade, can feature a two-photon correlation func-
tion that corresponds to the liquid phase, with oscilla-
tions and a power-law dependence for the short-times
correlations. The power is furthermore directly related
to the number of cascades, and produces the flat plateau
typical of hard-sphere repulsions in condensed matter, as
well as the characteristic bunching elbows that mark the
onset of local ordering [16].

As opposed to solving a quantum optical master
equation—which yields the same result, as we shall show
for a particular case—we take a more insightful statis-
tical and condensed-matter-inspired approach based on
two-photon correlation functions and their underlying
waiting time distributions. The incoherent two-photon
emission (1) can be understood as a two-steps process
with, first, an underlying, backbone Poisson (uncorre-
lated) stream of events, corresponding to the incoherent
excitation at rate Pσ that brings the system in its ex-
cited state. Each such event then draws another Poisson-
distributed random number with parameter γσ, describ-
ing the spontaneous emission (second step) [16]. This
is sketched in Fig. 1(a) where the exponential (Poisson)
distributions alternate sampling of uncorrelated excita-
tion T1 and spontaneous emission T2 times. Since we are
only interested in the emitted photons, we can equiva-
lently consider directly the distribution for T1+T2, which
is given by τ exp(−(Pσ + γσ)τ). If the emission involves
N steps, first with parameter Pσ and each subsequent
one with parameter γi (2 ≤ i ≤ N), then one needs to
similarly replace the exponential decay by the distribu-
tion for the sum of N independent exponential random
variables, which is one of the phase-type class of distri-
butions, known as the Hypoexponential distribution with
N parameters. When those are all equal, the distribution
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FIG. 1. Single-photon emission from (a) a two-level system
under incoherent pumping Pσ and decay γσ and (b) with a
prior cascade of intermediate transitions. (c) Photon emis-
sions from successive random processes of excitation and emis-
sion, described by exponential distributions or directly with
the corresponding Erlang distributions for two events. (d)
Case with N = 3 featuring one intermediate cascade and the
corresponding Erlang distributions. (e) Case with N = 25
(with a rescaled time axis) with the corresponding Erlang
distributions and only the final states (emission) of the cas-
cade depicted. The photon stream is neatly ordered in time
with short-range correlations of a liquid, although there are
no interactions and all processes are incoherent.

is more popularly known as the Erlang distribution and
we shall focus on this case for conceptual simplicity. The
waiting time distribution for N steps (one excitation plus
N − 1 cascades) can then be simply obtained as:

w(τ) =
γNτN−1e−γτ

(N − 1)!
. (4)

Since two-photon correlation functions can be computed
from the waiting time distribution w(τ) by transiting to
the Laplace space [23]

g̃(2)(s) ≡
∫ ∞

0

g(2)(τ)e−sτ dτ = γ
w̃(s)

1− w̃(s)
, (5)

with w̃(s) = γN/[(s + γ)N − γN ] the Laplace transform
of Eq. (4), we then find, by inverse Laplace transform:

g
(2)
N (τ) = 1 +

N−1∑
p=1

zpN exp
(
− γ(1− zpN )τ

)
(6)

where zN ≡ exp (i2π/N) are the Nth roots of unity. This
succinct general expression can be easily made explicit

for particular cases, e.g., with no cascade (N = 1 for the
excitation alone), we have an uncorrelated (or coherent)
photon stream, Fig. 2(a), while N = 2 describes the ex-
citation plus spontaneous emission of Fig. 1(c) and thus
recovers Eq. (1). We get new results with two cascades
(N = 3, Fig. 1(d)), for which Eq. (6) simplifies to

g(2)(τ) = 1− 2 sin

(√
3

2
γτ +

π

6

)
e−

3
2γτ (7)

and for three cascades (N = 4):

g(2)(τ) = 1− e−2γτ − 2e−γτ sin(γτ) (8)

with the possibility to derive similar closed-form expres-
sions for other N .
These cascaded chains of incoherent relaxation pro-

duce, interestingly, two-photon correlation functions that
are more like in character those of the coherently driven
case (2) than the incoherent case (1). Even with one cas-
cade only, there is some onset of liquefaction with oscil-
lations which, although not compelling numerically, are
clear from the analytical expressions in Eq. (7). The

maximum g(2)(τM) = 1 + e−
√
3π ≈ 1.0043 at γστM =

2π/
√
3, however, is only marginally different from unity.

Higher g(2) are obtained for a higher number of cascades
but at time delays which are zeros of transcendental equa-
tions (for instance, as a solution of exp(τ) sin(τ + π/4) =
c for N = 2) but these can be easily obtained numeri-
cally. Another manifestation of temporal liquefaction is
the hardening of the photons that increasingly repulse
each other, with short-time expansion from N cascades
providing the plateaus:

g(2)(τ) ≈ N2

N !
(γτ)N . (9)

This dependency of the short-time correlations mean that
a physical detector will be increasingly less affected, at
a qualitative level, by the fundamental time uncertainty
attached to photodetection. These qualities are directly
inherited from the waiting time distribution (4) and the
shape of the probability distribution for each photon
emission. The flattening of these quantities at short times
makes it possible to open an effective temporal gap. This
paves the way towards a genuine perfect single-photon
source, with no multiphoton emission for detectors with
a better temporal resolution than the time gap, just as a
superconductor is a genuine perfect conductor, with no
loss whatsoever. The peak following the plateau in the
emission probability also imprints a clear time-ordering
of the photons, as a result of the compound-time aver-
aging out its more extreme fluctuations. Together, these
two features produce a regular stream of photons. This is
obvious in Fig. 1(e) where photons appear to be equidis-
tantly spaced in time with small only fluctuations, as
would be expected from an externally-controlled (pulsed)
single-photon source [16]. Such an order is local only,
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however, as fluctuations, however small, pile up and even-
tually wash out correlations for photons distant enough.
This thus corresponds to a photon liquid, and never a
crystal, as the stream is intrinsically stationary for long-
enough times. This is, however, of little concern for the
single-photon character.

While these properties are well-understood from such
a point-process statistical approach, which is further-
more rooted in statistical arguments that have been thor-
oughly studied in condensed-matter physics, these re-
sults would also be obtained from a quantum treatment,
i.e., with a master equation for a multilevel system.
The case N = 3, for instance, with level structure |i⟩
for 0 ≤ i ≤ 2 and Hamiltonian H ≡

∑
i=1,2 ωi |i⟩⟨i|

can be described by the Lindbladian Lρ ≡= −i[H, ρ] +{
Pσ

2 L|2⟩⟨0| +
γ1

2 L|1⟩⟨2| +
γ2

2 L|0⟩⟨1|
}
ρ where for any oper-

ator Ω, LΩρ ≡ 2ΩρΩ† − Ω†Ωρ − ρΩ†Ω. One can then

compute steady-state two-time correlators like G
(2)
10 (τ) ≡

⟨σ†
10(0)σ

†
10(τ)σ10(τ)σ10(0)⟩ for σ10 ≡ |0⟩⟨1| from

the quantum regression theorem, i.e., G
(2)
10 (τ) =

Tr
(
σ†

10σ10e
Lτ [σ10ρssσ

†
10]
)
on the steady-state density

matrix which is diagonal:

ρss =
1

γ1γ2 + Pσ(γ1 + γ2)

γ1γ2
Pσγ1

Pσγ2

 . (10)

The normalization of G
(2)
10 yields g2(τ) for this transition,

which recovers Eq. (7) for the case Pσ = γ1 = γ2 that we
considered previously.

There have been many studies of single-photon emis-
sion both theoretically and experimentally, for which
our approach is relevant and that indeed prefigure our
small N phenomenology. This includes other full quan-
tum optical treatments (with a master equation) which
typically consider three-level systems [24, 25], which
however do not report oscillations but merely a multi-
exponential return to uncorrelated emission. There is
indeed a range of parameters that accommodate oscil-
lations in g(2)(τ) and our Erlang particular case fulfills
them. Such oscillations are conceptually noteworthy as
they occur in a completely incoherent system, expos-
ing the time-ordering as the system liquefies. While the
parameter range is not particularly strict, it is easy to
overlook if one is not aware of such a possibility. El-
bows to antibunching have also been observed in various
systems, where they are often attributed to intermedi-
ate states in a way that is compatible with our mecha-
nism [26–32]. Descriptions have been, however, based on
rate equations and the consequences in terms of better
single-photon emission have been either ignored or even
considered problematic, the case of Eq. (1) [Fig. 2ii] be-
ing considered, misguidedly, as an ideal. Multilevel rate
equations can provide powerful results, including impres-
sive accounts of g(2)(τ) over 11 orders of magnitude in
time, for systems bathed in highly-complex semiconduc-
tor environments featuring a plethora of dark states and
fluorescence intermittency [33]. Whether such models

i ii

iii iv

v vi

Rabi

FIG. 2. Two-photon correlation functions for i) coherent
light (ideal gas) ii) an incoherently pumped 2LS (gas), iii)
a strongly and coherently-driven 2LS (Rabi liquid), iv) an
incoherently-driven one-cascade 2LS (onset of liquid with a

zoom in inset showing the g(2) = 1.0043 bunching), v) liq-
uefaction with 5 cascades and vi) liquid with 25 cascades.
Note that the τ axis is rescaled in the latter case as over the
range ±10/γ of the other plots, g(2) remains below 2× 10−3.
We assumes all rates to be equal.

compete or complement our mechanism, which endows
photons with qualitatively superior features of single-
photon emission, remains to be ascertained. Our ap-
proach furthermore focused on the most basic configura-
tion to highlight the conceptual novelty, and should be
extended in several ways to tackle realistic experiments.
Let alone that the Erlang (degenerate) distribution is a
very particular case (with one parameter only whereas
one naturally expect various transitions to come with
possibly largely varying parameters), the number of steps
in the cascade could also be a random variable, and the
possibility for various carriers to undergo such cascades
simultaneously be included. Our basic picture of lique-
faction should however remain and even apply to more
general cases, e.g., that of interactions between several
emitters, that display curves similar to Eq. (6) [34].
Our findings come with several conclusions. One

is that the quest for perfect single-photon sources has
been so far driven by technological improvements to re-
duce g(2)(0) as much as possible from the basic struc-
ture of a two-level system. This is a quantitative and
asymptotic race that is doomed to imperfection as the
limitations are fundamental: photodetection as a physi-
cal process will always detect simultaneous photons from
a two-level system [19]. To obtain perfect single-photon
emission, one must open a gap somewhere [16]. We have
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provided a straightforward mechanism, furthermore of
relevance in solid-state platforms and that could other-
wise be engineered, of a cascade process that results in
strong repulsions between photons with the effect of im-
printing strong correlations between them, similarly to
how interactions order and correlate molecules in a fluid.
The number N of cascades rules the magnitude of the
effect and we have given a general closed-form analytical
expression for all N . A related conclusion is that g(2)(0)
itself is not the most relevant measure for two-photon
suppression. One must instead consider g(2)(τ) locally
around τ = 0, and consider both the power dependence
of the short-time correlations as well as the presence of
oscillations or at least bunching (elbows) past the first co-
herence time, as these mark the onset of short-time pho-
ton ordering. This also suggest that considerably more
types of quantum lights are awaiting to be discovered
and classified through such a perspective. Finally, maybe
the most far-reaching suggestion of our approach, is that
thermodynamic concepts that are central to describe con-

densed matter could also provide more systematic and
deeper descriptions of quantum light, possibly relying on
equations of states to describe the various phases, as op-
posed to n-th order coherence (almost always truncated
to n = 2 anyway). Bunching, for instance, might be
related to plasma. Intriguingly, this condensed-matter
perspective would require to trade space for time.
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