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We study spatial correlations of vortices in different quantum states or with Bose or Fermi statis-
tics. This is relevant for both optical vortices and condensed-matter ones such as microcavity po-
laritons, or any platform that can prepare and image fields in space at the few-particle level. While
we focus on this particular case for illustration of the formalism, we already reveal unexpected fea-
tures of spatial condensation whereby bosons exhibit a bimodal distribution of their distances which
places them farther apart than fermions in over 40% of the cases, or on the opposite conceal spatial
correlations to behave like coherent states. Such experiments upgrade in the laboratory successful
techniques in uncontrolled extreme environments (stars and nuclei).

In a statistical theory, when waves interfere, they
produce correlations between them. This elementary
fact surprisingly escaped notice for centuries despite the
unanimous embrace and resounding successes of both
wave theory and of statistics. This changed when a young
engineer (Hanbury Brown) [1] working on the secret de-
velopment of the radar for British intelligence, spotted
the effect with his naked eyes on oscilloscope traces and
used it to create a new type of stellar interferometry [2].
Purcell [3] understood that this counter-intuitive effect—
correlations from non-interacting, indeed merely interfer-
ing objects—was in fact fully expected from even more
fundamental quantum mechanical considerations and ex-
tended it to fermions, predicting instead anticorrelations
as opposed to bosonic positive correlations. The effect
became a powerful tool to measure sizes ranging from the
diameters of stars (1012 cm) to high-energy nuclear mat-
ter (10−12 cm) [4]. While in radioastronomy, intensity
interferometry has been described by Hanbury Brown as
“building a steam roller to crack a nut” [1], the tech-
nique became indispensable in high-energy physics and
nuclear physics [5]. It allowed the first measurement of
the radius of interactions for the proton-antiproton pro-
cess from the amount of correlations of identical pions
formed in the nuclear reaction [6]. Since then, it be-
came a central, sometimes only, way to measure sizes
and lifetimes of high-energy particles and nuclear reac-
tions [7], being instrumental for instance in the investiga-
tion of such extreme forms of matter as the quark-gluon
plasma formed in ultrarelativistic nucleus-nucleus colli-
sions [8]. In quantum optics, while the emphasis has
been on temporal correlations, technological progress,
e.g., with superconducting nanowire single-photon detec-
tors [9], can capture increasingly high-resolution images
from single-photon pixelated detectors [10], thus bring-
ing back spatial quantum correlations to the fore of solid-
state and condensed-matter physics [11]. In high-energy
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and nuclear physics, bosonic correlations—bunching of
events—are mostly investigated, since fermionic corre-
lations are shadowed by stronger particle interactions
(typically, Coulomb repulsion from charged particles).
In contrast, low-energy quantum optics became able to
control the statistics of photons through their underlying
quantum state. Indeed, Glauber understood coherence as
the faculty of photons to neutralize their intrinsic Boson
correlations [12] to be detected as an uncorrelated (Pois-
son) stream, which could be understood as the wave-like
limit of light where the particle aspect vanishes. At the
other extreme, photons can also be made to behave like
fermions by exhibiting antibunching [13–15]. The abil-
ity to control, or at least characterize, quantum states
from photon correlations resolved spatially could endow
spectroscopic techniques with new and considerably en-
hanced opportunities as compared to their Bose-Einstein
interferometry counterpart [5].

Here, we describe correlations of multi-particle quan-
tum states extended in real space (or other related spaces
through the appropriate transforms). To keep the dis-
cussion simple and to the point, we focus on a par-
ticular case that interfaces between optics [16, 17] and
condensed matter, namely, vortices [18]. Microcavity
polaritons [19], sitting halfway between optics and the
solid state, and with a particularly fruitful development
of vortices [20, 21], provide but one example of a plat-
form where to pursue the next generation of bosonic
interferometry. As the topological cornerstone of 2D
quantum fields, vortices are central to many polaritonic
breakthroughs [22, 23], from the observation of their
BKT phase transitions [24] to, more recently, the real-
ization of the superfluid bucket experiment [25, 26] pass-
ing by Rabi-propelled dynamics [27] or quantum turbu-
lence [28]. As quasi-particles which admix both light
(photons) and matter (semiconductor electron-hole pairs,
or excitons), polaritons have always elicited a quantum-
mechanical formulation, in particular as superpositions
with a wavefunction |ψ⟩ ≡ α(t) |1a, 0b⟩+β(t) |0a, 1b⟩ that
entangles a photon (with Bose creation operator a†) and
the exciton vacuum to its Rabi-flop counterpart with
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one exciton (operator b†) and no photon. This gen-
uinely quantum-mechanical state was, however, not re-
alized until recently, by direct excitation of a microcav-
ity with quantum light [29, 30]. In all other cases, a
product state |α(t)⟩a⊗|β(t)⟩b (no entanglement) or some-
thing similar (with some amount of squeezing [31–33] but
still within Gaussian states), is realized instead. In such
cases, the probability amplitudes of |ψ⟩ become classical-
field amplitudes for coherent states of both the photon
and exciton fields [34]. Because α(t) and β(t) follow
the same equations of motion in both interpretations,
although these are very different (quantum probabilities
or classical-field amplitudes, respectively), there tends to
be some confusion as to the exact quantumness involved
with polaritons. One of the outcomes of studying spatial
correlations of photons emitted by the polariton field will
be to provide clear-cut experimental resolves of the cen-
tral and long-standing question of their quantum char-
acter. We also consider fermionic statistics, that can be
realized for spatial wavefunction with singlet-spin. Our
considerations are not specific neither to polaritons nor
to vortices, which merely provide an illustration of the
potential of spatial multiphoton correlations.

Quantum mechanics is a wave theory, and at the
heart of its formalism lie the eigenmodes of the sys-
tem being described. Vortices provide a textbook
case of basis states for the 2D harmonic oscillator, for
which they provide eigenstates of defined angular mo-
mentum in terms of the 1D eigenfunctions ϕn(x) ≡(√

2nn!π
1
4

)−1
e−x2/2Hn(x) with Hn(x) the Hermite poly-

nomials with n ≥ 0 integers and x in units of the
single-charge vortex radius. It will be enough for our
discussion to consider stationary 2D vortices with ±1
topological charge, denoted |⟲⟩ and |⟳⟩, with eigen-
functions ϕ⟲(r) = ϕ∗⟳(r) ≡ ⟨x, y|⟲⟩ =

[
ϕ1(x)ϕ0(y) +

iϕ0(x)ϕ1(y)
]
/
√
2. Given the separation of variables and

linearity of quantum mechanics, we can actually develop
the formalism for one variable only and keep our discus-
sion one-dimensional. This will be at no loss of general-
ity but with great simplifications of the notations. In the
second quantization formalism, the family of n-particle
density distributions is written in terms of a field op-
erator Ψ̂†(x) ≡

∑
m ϕ∗m(x)a†m where ϕm(x) is the one-

particle wavefunction corresponding to the m-th spatial
mode |m⟩ with creation operator a†m (so ⟨x|m⟩ = ϕm(x)).
In 2D, here we would have to keep track of, say, n⟲
and n⟳ the indices labeling the basis. This operator ap-
plied on the vacuum creates a particle at the position x
since Ψ̂†(x) |0⟩ = |x⟩ [35] and yields the density operator

n̂(1)(x) ≡ Ψ̂†(x)Ψ̂(x). We now consider quantum states
for the particles. The most general case is described by
the density matrix ρ̂ ≡

∑
m,n α n

m
|n⟩ ⟨m| where n, m

are vectors of integers that specify how many modes are
occupied in the occupation-number formalism with nor-
malization

∑
m,n |α n

m
|2 = 1, e.g., |n⟩ = |n0, n1, · · · , nm⟩

refers to the state with n0 particles in the eigenstate ϕ0,
n1 in the eigenstate ϕ1, etc. Typically, one studies one-
particle observables, such as the density profile (e.g.,

near-field imaging), recovered from the full quantum pic-
ture with the so-called reduced one-particle density ma-
trix ρ(1)(x) ≡ ⟨n̂(1)(x)⟩ =

∫
⟨x| ρ̂ n̂(1)(x) |x⟩ dx where |x⟩

is the vector with as many variables as necessary to dot
the operator ρ̂ n̂1(x) which, since it can have a varying
number of particles, makes the integral running over pos-
sible particle numbers. It reads in terms of the single-
particle wavefunctions and the quantum state ρ̂ [35]:

ρ(1)(x) =
∑
p,q

⟨a†paq⟩ϕ∗p(x)ϕq(x) (1)

where ⟨a†paq⟩ ≡ tr
{
ρ̂a†paq

}
=

∑
m,n α n

m

〈
m|a†paq

∣∣n〉.
Similarly, the reduced two-particle density ma-
trix ρ(2)(x, x′) = ⟨:n̂(1)(x)n̂(1)(x′):⟩ is obtained as [35]:

ρ(2)(x, x′) =
∑

p,p′,q,q′

⟨a†pa
†
p′aq′aq⟩ϕ∗p(x)ϕ∗p′(x′)ϕq(x)ϕq′(x

′) .

(2)
The integration of ρ(1)(x) and ρ(2)(x, x′) over x and

x′ leads to ⟨N̂⟩ and ⟨:N̂2:⟩, respectively, where N̂ ≡∑
m a†mam. Therefore, they do not correspond to a prob-

ability distribution but they can be normalised to act
as such. One could carry on with higher-particle num-
bers but it will be enough for our present discussion to
limit to two particles. The second quantization formal-
ism conveniently embeds self-consistently the quantum
statistics (or lack thereof) through the algebra of the op-
erators [35], so one merely has to compute ⟨a†paq⟩ and

⟨a†pa
†
p′aq′aq⟩ in the chosen basis for the states considered.

When p = p′ or q = q′, the fermionic correlators give
zero while the bosonic ones get magnified by a factor

√
2.

We are now in a position to compute the one- and two-
particle reduced density matrices for cases of interest. At
this stage, we can upgrade the formalism to the required
dimensionality through the substitution x → r and the
corresponding labeling of the basis states. In our cho-
sen case of single-charge vortices, i.e., remaining within
a closed set of two states, the calculations are straight-
forward. We provide the general result for any two
modes a and b for the one-particle reduced density ma-
trix in Eqs. (3) and turn to the particular case of vortices
for the two-body reduced density matrices in Eqs. (4).
We consider i) Fock states, i.e., with an exact number of
quanta, of both Bosonic and Fermionic particles, so that
in our two-modes picture, that can only be |1a⟩F |1b⟩F
for fermions while one can distribute n bosons into n− k
in one mode and k in the other: |(n− k)a⟩B |ka⟩B. Now
considering bosons only, we can also turn to other quan-
tum states, e.g., coherent states |α⟩a |α⟩b where α ∈ C
and |α⟩ ≡ e−|α|2/2 ∑∞

n=0
αn
√
n!

|n⟩ or thermal states ρθ ≡
(1 − θ)

∑∞
n=0 θ

n |n⟩⟨n| with θ ≡ n̄
1+n̄ the effective tem-

perature for a thermal state with mean occupation n̄.
So-called cothermal states provide useful interpolations
as mixtures of a coherent state of intensity |αc|2 with a
thermal state of temperature θc. These are discussed in
details in the Supplementary [35]. Obviously, numerous
other cases (e.g., squeezing) could also be usefully added.
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One-particle density matrices for quantum states of interest distributed over two modes ϕa and ϕb of the system:

Fock Fermions |1a⟩F |1b⟩F : ρ
(1)
F (r) = |ϕa(r)|2 + |ϕb(r)|2 , (3a)

Fock Bosons |na⟩B |mb⟩B : ρ
(1)
B (r) = n|ϕa(r)|2 +m |ϕb(r)|2 , (3b)

Coherent state |αa⟩ |αb⟩ : ρ
(1)
coh(r) =

∣∣αaϕa(r) + αbϕb(r)
∣∣2 , (3c)

Thermal state ρθaρθb : ρ
(1)
th (r) = n̄a|ϕa(r)|2 + n̄b|ϕb(r)|2 , (3d)

The corresponding two-particle reduced wavefunctions for vortices:

Fock Fermions |1⟲⟩F |1⟳⟩F : ρ
(2)
F (r, r′) = |ϕ⟲(r)ϕ⟲(r′)− ϕ⟳(r)ϕ⟳(r

′)|2 , (4a)

Fock Bosons |n⟲⟩B |m⟳⟩B : ρ
(2)
B (r, r′) = nm |ϕ⟲(r)ϕ⟲(r′) + ϕ⟳(r)ϕ⟳(r

′)|2 +
+ n(n− 1)|ϕ⟲(r)ϕ⟲(r′)|2 +m(m− 1)|ϕ⟳(r)ϕ⟳(r′)|2 (4b)

Coherent state |α→⟩ |α↑⟩ : ρ
(2)
coh(r, r

′) = ρ(1)→ (r)ρ
(1)
↑ (r′) , (4c)

Thermal state ρθ⟲ρθ⟳ : ρ
(2)
th (r, r′) =

∑
p,p′∈{⟲,⟳}

n̄pn̄p′
(
|ϕp(r)|2|ϕp′(r′)|2 + ϕ∗p(r)ϕp(r

′)ϕ∗p′(r′)ϕp′(r)
)
, (4d)

It was necessary to consider the general case of two
modes a and b in Eqs. (4) because for the configura-
tion that interests us, where ϕa = ϕ⟲ and ϕb = ϕ⟳,
which is such that |ϕ⟲|2 = |ϕ⟳|2, then for conditions
that make those various states comparable, e.g., with
the same mean populations, they are exactly identical

at the one-particle level, i.e., ρ
(1)
F = ρ

(1)
B = ρ

(1)
coh = ρ

(1)
th =

ρ
(1)
coth = ρ

(1)
cat wih also cothermal and cat states from the

Supplementary [35] and still other quantum states could
be added to this list. The required adjustment are n⟲ =
m⟳ = 1 for bosons (one in each state, like Fermions, thus
differing only in their statistics) and n̄⟲ = n̄⟳ = 1 for
thermal states, i.e., with same mean but thermal fluctu-
ations. For coherent states, besides the same mean, one
further needs to turn to the cartesian basis of dipoles,
ϕ→(r) ≡ ϕ1(x)ϕ0(y) and ϕ↑(r) ≡ ϕ0(x)ϕ1(y), so that
when brought together, due to their phase coherence,
they produce the same donut shape as the other states
(when α→ = iα↑ with |α→|2 = 1). States with no coher-
ence, like Fock or thermal states, on the other hand, are
indifferent to the choice of basis, i.e., both |1⟲⟩S |1⟳⟩S
and |1→⟩S |1↑⟩S produce the donut for both S ∈ {F,B}.

Despite this mathematical identity of their one-photon
reduced density matrix, all these states differ drastically
for their two-photon reduced density matrix, as should be
clear from Eqs. (4). A more “visible” and direct mani-
festation of such departures is shown in the figure, where
we compare the three illustrative cases of (a & b) two
Fock states with one particle in each vortex state and (c)
two coherent states with mean amplitude one, so there
is also one particle in each mode but this time on av-
erage and with poissonian fluctuations (thus also hav-
ing no particle with the same probability ≈ 37% than
having one, and with more than one particle over one-
fourth of the time). Although the density profiles for
all cases, as reconstructed from averaging over the pho-

tons detected in isolation, are identical and recover the
theoretical limit (shown in the Inset (d) both in 2D and
with a cut along the radius), photons detected in pairs
behave differently. The simplest quantity to measure is
the distance between them. This is obtained from ρ(2)

as D(d) ≡ ⟨:N̂2:⟩−1
∫
ρ(2)(r, r′)δ(∥r− r′∥ − d) dr dr′ with

⟨:N̂2:⟩ =
∫
ρ(2)(r, r′) dr dr′ the normalization. The aver-

age is, this time, over (at least) two-photon observables.
We show three such frames for each case at the top of
the figure. Superimposing all these frames, one aver-
ages over the two-particle observables to recover the one-
particle one as ρ(1)(r) =

∫
ρ(2)(r, r′) dr′. Experimentally,

this corresponds to the acquisition of the density profile
by integrating over the detected photons, washing out
their correlations and properties in the process. Multi-
photon correlations must thus be obtained from indepen-
dent frames before their averaging, which constitutes a
quantum measurement. The corresponding theoretical
distributions for the three cases are shown below, with
a singled-peak DF(d) =

1
2d

3 exp
(
−d2/2

)
for Fermions, a

bimodal DB(d) =
1
8 (8− 4d2 + d4) exp

(
−d2/2

)
for bosons

and a flattened DCoh(d) = 1
16d(8 + d4) exp

(
−d2/2

)
for

coherent states. Although bosons, with a mean separa-
tion of

√
121π/128 ≈ 1.72 time the vortex radius, are

closer on average than fermions, whose mean separa-
tion is

√
9π/8 ≈ 1.88 (all distances are in units of the

vortex radius), they present two local maxima, at both
very small distances of ≈ 0.71 and large ones ≈ 2.4 as
opposed to

√
3 ≈ 1.73 for fermions. In fact, bosonic

Fock states are those most likely to distribute their two
photons farther apart than a distance strictly greater
than d = 2. Curiously, all these quantum states have the
same probability (3/e2) to be found at a distance equal
to the vortex diameter, and this remains true for the
extended family considered in the Supplementary [35].
Also, all the distance distributions feature the same vari-
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(a) (b) (c)

(d)

(g)(e) (f)

FIG. 1. Top row: Single-shot realizations and their aver-
ages for Fock states |1⟲⟩ |1⟳⟩ with (a) Fermi F & (b) Bose B
statistics, and (c) for coherent states. The sum over many
realizations converge to the exact same vortex shape shown
in (d). Second row: distributions D(d) between any two par-
ticles from the corresponding column. Bosons present a bi-
modal distribution. Third row: distributions D(∆θ) of the
angles between particles. (e–f) The three cases superimposed
along with an enlarged family of quantum states, including
unbalanced Fock states and thermal states. (g) Monte Carlo
of distinguishable photons sampled from two dipoles, to re-
veal the underlying structure, and the angular correlations
for fermions and bosons when these are indistinguishable in
the donut. A particle at angle θ (black) suppresses red and
stimulate green ones, resulting in rich spatial correlations.

ance Var(d) = 4 despite corresponding to different quan-
tum states. There are thus various peculiarities from
even simple cases put in various quantum states. The bi-
modal curiosity is easily explained, as due to the spatial
profile of the underlying state (the donut shape). If in-
stead of the distances—which is easy to measure as this
is absolute—we consider relative angles ∆θ with respect
to the donut center, then we can capture the essence of
the phenomenon. This is shown in the third row, where
we plot D(∆θ) ≡ 1

⟨:N̂2:⟩

∫
ρ(2)(r, r′)δ(ϑ′ − ϑ −∆θ) drdr′

for the respective cases. This results in the simpler
DF(∆θ) = 2

π cos2 ∆θ and DB(∆θ) = 2
π sin2 ∆θ while

DCoh(∆θ) = cste (1/π as normalization of the uniform
distribution). This means that the geometric aspect
which bosons and fermions extremize is not the distance,
but the angle: fermions want to be perpendicular while
bosons want to be aligned. The boson bimodal distribu-
tion is because if particles get aligned on the same side
of the donut, they are close together, while if they are
on the other side of the hole, they are farther apart than
fermions, which are at right angle. Symmetrizing the an-
gle alone is possible because vortices have a hole in their
center, and fermions can never sit on each other as their

only meeting point would be at the core, which has no
particles. Aligned bosons can be found at the same po-
sition, but they do not maximize their spatial overlap by
being on the same side of the donut. Their probability
is still locally twice as much to be found at close dis-
tance d ≈ 0 since DB(d) ≈ d while DCoh(d) ≈ d/2 (com-
pare with DF(d) ≈ d3/2) but this “spatial condensation”
is because the perpendicular options are depleted (while
the opposite one, maximizing distances, is also Bose stim-
ulated). Coherent states wash out all traces of particle
correlations, although bosonic symmetry is knitted in the
fabric of the wavefunction, but this cancels out by dis-
entangling, so that particles get distributed indiscrimi-
nately even in individual frames. The second row of the
figure is thus best understood as the distribution for the
law of cosines D ≡

√
R2

1 +R2
2 − 2R1R2 cos(Θ) for the

independent random variables R1 and R2 sampling the
radial profile ρ1(r) while Θ follows DF, DB or DCoh, con-
firming that particles do not “care” about their distance
per se, which is sampled randomly and independently,
but about their angle, wherein lies the two-particle cor-
relations. There are countless other quantum states that
can correlate their photon pairs in a way which does
not transpire through single-photon observables, and the
most straightforward extensions to the Fock and coher-
ent states are shown in Panels (e) for distances and (f)
for angles, enclosed between the Bose and Fermi extrema
of two particles. Cothermal states span continuously be-
tween the thermal and coherent boundaries and a precise
measurement of this distribution would allow to extract
information on the underlying quantum state, such as the
coherent fraction of a Bose condensate. Vortices from
two particles in the dipole basis are interesting in this
respect. Fermions retain the same correlations in both
bases, with the tendency, when a photon is detected at
an angle θ, to have the second one be detected at an-
gles θ ± π

2 while suppressing those at θ + π, as sketched
in panel (g). This is clear from the quantum state ex-
pressed in both basis: |1→, 1↑⟩F = i |1⟲, 1⟳⟩F. Bosonic
dipoles, on the other hand, turn into NOON vortices
|1→, 1↑⟩B = i√

2
(|2⟲, 0⟳⟩ − |0⟲, 2⟳⟩) with, surprisingly,

the distribution of distances of uncorrelated particles,
i.e., Dcoh(d). But this is not because they are, like co-
herent states, not correlated. On the opposite, they have
even more complex correlations, requiring to keep track
of two angles. We can indeed write the two-particle re-
duced density matrix for all cases in polar coordinates as

ρ(2)(r, s, θ, ϑ) = 2r2s2e−r2−s2D(θ, ϑ)/π2 , (5)

where, in most cases, the two-angle distributions is ro-
tation invariant and thus depend only on ∆θ ≡ θ − ϑ
as is the case for the distributions already given and
plotted. Bosonic dipoles, on the other hand, have
D|1→,1↑⟩B(θ, ϑ) =

2
π sin2(θ + ϑ) with an absolute depen-

dence of the angles (the rotation invariance is broken by
the dipole orientation). This is sketched on the figure
with a “first” detected photon (in black) at θ finding oth-
ers more likely or suppressed, according to the bosonic
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stimulation of vortices at diagonal angles (θ = kπ/4
for integer k), but of fermionic ones at right angles
(kπ/2). This corresponds to antibunching of same-dipole
arrangements and bunching of overlapping perpendicular
dipoles. The averages of these competing cases result in
uncorrelated distances, as if the resulting vortex was co-
herent, when it is, in fact, richly structured. Similarly,
thermal states have the same correlations in either basis
by averaging unbalanced Fock states |n,m⟩ [35].

An exciting immediate follow-up of our approach
is to query the bosonic character of excitonic vortices
from such spatial correlations for two electron-hole
pairs bound as excitons, so bosons, and thus expressing
as a whole bunching tendencies, but with a built-in
frustration of their constituents opposing Pauli re-
pulsion [36]. Identifying which model, from simple
phenomenological ones based on q-deformed algebra
to exact full semiconductor Hamiltonians treatment,
reproduces unequivocal experimental results, would
resolve this thorny and longstanding controversy of
solid-state physics [37, 38]. Then one can turn to a
full dynamical (not stationary), interacting (not linear),

multiphoton (> 2) correlations in both space and time
for arbitrary spatial profiles (not merely vortices). Two
and three-photon vortex states have recently been
created in strongly-interacting Rydberg gases [39], which
also provide natural and even richer platforms for such
characterizations. There is no end of problems to tackle
in this way. Surprising correlations were noted early
on from sub-atomic physics with unexpected bosonic
effects even between distinguishable particles, due to
intermediate-state and interference effects in multipion
production [40]. Interestingly, this was linked to some
innate capacity of the particles to produce squeezing.
From our quantum-optical perspective, one can get
direct control of the quantum states of the field to cover
the full gamut of possibilities beyond the Bose-Einstein
correlations found in stars and nucleis, and thus go at
the bottom of these fascinating effects which started the
modern theory of light.
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