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We explore the potential of spatial-photonic Ising machines (SPIMs) to address computationally
intensive Ising problems that employ low-rank and circulant coupling matrices. Our results indicate
that the performance of SPIMs is critically affected by the rank and precision of the coupling
matrices. By developing and assessing advanced decomposition techniques, we expand the range
of problems SPIMs can solve, overcoming the limitations of traditional Mattis-type matrices. Our
approach accommodates a diverse array of coupling matrices, including those with inherently low
ranks, applicable to complex NP-complete problems. We explore the practical benefits of low-rank
approximation in optimization tasks, particularly in financial optimization, to demonstrate the real-
world applications of SPIMs. Finally, we evaluate the computational limitations imposed by SPIM
hardware precision and suggest strategies to optimize the performance of these systems within these
constraints.

I. INTRODUCTION

The demand for computational power to solve large-
scale optimization problems is continually increasing in
fields such as synthetic biology [1], drug discovery [2], ma-
chine learning [3], and materials science [4, 5]. However,
many optimization problems of practical interest are NP-
hard, meaning the resources required to solve them grow
exponentially with problem size [6]. At the same time,
artificial intelligence systems, including large language
models with a rapidly increasing number of parameters,
are leading to unsustainable growth in power consump-
tion at data centers [7]. This has spurred interest in
analog physical devices that can address these compu-
tational challenges with far greater power efficiency than
classical computers. Various physical platforms are being
explored, including exciton-polariton condensates [8–12],
lasers [13–15], and degenerate optical parametric oscilla-
tors [16–18]. Many of these platforms are known as Ising
machines, which aim to solve an optimization problem
called the Ising problem by minimizing the Ising Hamil-
tonian:

H = −
N

∑
i,j

Jijsisj +
N

∑
i

hisi, (1)

where spins si = ±1. Although this problem originates
from a model of ferromagnetism, where the first term is

∗ correspondence address: N.G.Berloff@damtp.cam.ac.uk

the coupling term with the coupling strengths determined
by matrix J and the second term represents the external
magnetic field of strength h, many NP problems have
been mapped to it with only polynomial overhead [19],
making it highly significant beyond its original context.

Ising machines based on spatial light modulators
(SLMs) have shown their effectiveness in finding the
ground state of Ising Hamiltonians, mainly due to their
scalability [20]. However, current experimental imple-
mentations of spatial-photonic Ising machines (SPIMs)
primarily use Mattis-type coupling matrices [20–22]. The
Mattis-type matrix J is defined as the outer product of
two identical vectors:

Jij = ξiξj . (2)

This formulation results in a rank-1 matrix with N de-
grees of freedom, where N is the dimensionality of the
vector ξ. Typically, the coupling matrix of an Ising
Hamiltonian can be any real symmetric matrix with zeros
on its diagonal, encompassing up to N(N − 1)/2 degrees
of freedom and a rank that does not exceed N . This
restriction significantly limits the variety of Ising Hamil-
tonians that SPIMs can effectively realize.

Recent advancements have expanded the types of ma-
trices that SPIMs can implement, thanks to innovations
like the quadrature method [23], the correlation function
method [24], and the linear combination method [25].
The quadrature method faces a specific challenge: for a
given coupling matrix Jij , it is not always clear whether
and how it can be decomposed into quadrature com-
ponents that, when recombined, accurately reproduce
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the desired matrix. In contrast, the correlation function
method allows for the evaluation of matrices character-
ized by components of the form

Jij = G(i − j)ξiξj , (3)

where G(i − j) can be arbitrary function. The Ising
Hamiltonian can be effectively evaluated using the cor-
relation function method by calculating the correlation
function of measured intensity values from SPIM against
a distribution function g, derived via the inverse Fourier
transform of the function G(i − j). While this method
broadens the range of matrices that can be represented, it
introduces a limitation: the dependency of the additional
factor G solely on the difference between spin indices i−j
restricts output to circulant matrices. Consequently, this
method can only represent Ising problems with periodic
geometrical properties.

The linear combination method, on the other hand,
theoretically allows for the representation of arbitrary
matrices. This is achieved by decomposing the required
coupling matrix into a linear combination of Mattis-type
matrices:

Jij =
R

∑
k=1

λkξ
(k)
i ξ

(k)
j . (4)

Each Mattis-type matrix is then sequentially realized in
the SPIM, and all outputs are electronically combined to
produce the desired Ising Hamiltonian with the accurate
coupling matrix. Theoretically, if rank R = N , any arbi-
trary matrix Jij can be represented, although the number
of optical adjustments and readouts required also scales
as O(N). Therefore, it is crucial to investigate whether
computationally challenging problems of fixed rank R,
which does not increase with problem size, can be rep-
resented. Given that rank(A +B) ≤ rank(A) + rank(B),
and rank(ξiξj) = 1, the rank of J is bounded by R. This
highlights the potential of solving challenging optimiza-
tion problems that can be mapped to an Ising model with
a low-rank coupling matrix.

This paper identifies computationally significant prob-
lems suitable for efficient implementation on SPIM hard-
ware or other hardware with similar coupling matrix lim-
itations. Many NP-complete problems have already been
mapped to Ising models [26]; however, for effective im-
plementation on SPIMs, these Ising models must have
coupling matrices that are either low-rank or circulant.
In Section II, we discuss the energy efficiency of SPIMs
that can be utilized in unconventional hardware for opti-
mization and machine learning applications. In Section
III, we explore problems corresponding to Ising models
with inherently low-rank coupling matrices and discuss
the practical limitations of such models due to the in-
creasing precision requirements of SPIM hardware. In
Section IV, we examine the feasibility of finding approx-
imate solutions to computational challenges by approx-
imating them with low-rank Ising models. Notably, a
practical optimization problem in finance is well approx-

imated by this approach, allowing for efficient SPIM im-
plementation. The potential applicability of low-rank
matrices implementing a restricted Boltzmann machine
on SPIM hardware is also briefly discussed. Section V in-
troduces a new variant of an NP-hard problem, the con-
strained number partitioning (CNP) problem, highlight-
ing its potential to achieve computational hardness with
only a slowly increasing precision requirement, enabling
existing SPIM hardware to address moderately sized hard
problems even with limited precision. Finally, Section VI
addresses translationally invariant problems that can be
effectively resolved using the correlation function method
with SPIMs [24].

The following section discusses SPIMs’ performance
metrics and inherent advantages, highlighting their po-
tential across various computational tasks.

II. SPIM PERFORMANCE, ADVANTAGES
AND GENERALITY

By exploiting the properties of light, such as interfer-
ence and diffraction, SPIMs and other SLM-based devices
perform computations in parallel, providing significant
speed advantages over electronic systems.

SPIMs use spatial light modulation to emulate Ising
problems, which are fundamental to various optimization
and machine learning tasks [15, 27]. They optically com-
pute the Ising Hamiltonian from the phase-modulated
image of an amplitude-modulated laser beam. Light inci-
dent on the ith site of the spatial light modulator with an
amplitude ξi is phase-modulated to take Ising spin states.
SPIMs can efficiently process all-to-all interactions across
tens of thousands of variables, with the computational
time for calculating the Ising energy H scaling as O(N)
for N spins [28, 29]. However, SPIMs are optimized for
Ising problems with either rank-one interaction matrices,
Eq. (2), or low-rank R interaction matrices, Eq. (4), using
multiplexing techniques [28, 30]. This still offers a com-
putational advantage compared to conventional O(N2)

CPU operations if R ≪ N . Despite the limitations to
low-rank problems, using SPIMs and similar devices for
combinatorial optimization has a significant advantage
over other annealers.

The SPIM optical device comprises a single spatial
light modulator, a camera, and a single-mode continuous-
wave laser. The power consumption of an SLM (model
Hamamatsu X15213 series) is 15W. The power consump-
tion of a charge-coupled device camera (model Basler Ace
2R) is 5W. The power consumption of a laser (Thor-
labs HeNe HNL210LB) is 10W. Thus, the overall SPIM
power consumption is 30W. This can be compared with
the 16kW needed to run a D-WAVE system [31].

In terms of speed, it has been shown that the run-
time for a number partitioning optimization problem
with problem size N = 16384 is about 10 minutes, which
is comparable to the D-WAVE 5000+ Advantage system
at N = 121. These comparisons underscore the impor-
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tance of developing optical annealers based on spatial
light modulation [29].

Although this paper focuses on SPIMs, the results ap-
ply to other alternative analog Ising machines that use
similar methods of generating coupling matrices. Specif-
ically, these machines may also employ SLM and tech-
niques that allow the realization of low-rank interaction
matrices through the direct implementation of rank-one
matrices or the linear combination of multiple rank-one
matrices. The problems we discuss in our paper extend
their applicability to various analog computational plat-
forms that share these experimental foundations.

Having established SPIMs’ general performance and
benefits, we now focus on a critical subset of prob-
lems—those characterized by inherently low-rank struc-
tures.

III. INHERENTLY LOW RANK PROBLEMS

A. Properties of Low Rank Graphs

Given the advantages of optical annealers based on
spatial light modulation, as previously discussed, it is
crucial to understand the structure of Ising coupling ma-
trices. Every Ising coupling matrix J can be associated
with the (weighted) adjacency matrix of an underlying
(weighted) graph. One can then define the rank of a
graph by identifying it with the rank of its adjacency
matrix. For graphs with identical connectivity, the un-
weighted version will generally have a different rank from
the weighted graph.

In the case of an unweighted graph G with ∣G∣ ver-
tices, it has been proven that rank(G) = 2 if and only if
G =Kp,q, where Kp,q is the complete bipartite graph. A
complete bipartite graph is one whose vertices can be par-
titioned into two subsets. Every vertex in one subset is
connected to every vertex in the other, and no edge exists
between vertices within the same subset. A complete tri-
partite graph Kp,q,r is defined similarly, but with the ver-
tices partitioned into three subsets, and it was also shown
that rank(G) = 3 is equivalent to G =Kp,q,r [32]. Hence,
any problems mapped to an unweighted complete bipar-
tite or tripartite graph can be efficiently implemented on
SPIM.

To consider weighted graphs, a generalization of the
rank of a graph is given by the minimum rank mr(G),
defined as

mr(G) = min
aij≠0

(rank(J) ∣ Jij = aij adj(G)ij), (5)

where adj(G) denotes the adjacency matrix of G and
minimization is over all real numbers. Essentially, the
minimum rank mr(G) of a graph G is the minimal rank
that can be achieved by varying the connection weights
in the graph while maintaining the same connectivity
structure (i.e., vertices that are connected or unconnected

must remain so). This value represents the minimum pos-
sible rank of the coupling matrix J, where non-diagonal
elements of J can be varied, but those elements that are
zero must remain zero (while non-zero elements must
remain non-zero). The maximum rank of a graph G
is always ∣G∣, and it has been demonstrated that any
rank between the maximum and minimum rank can be
achieved [33]. For a weighted complete bipartite graph,
mr(Kp,q) = 2 [33]. Thus, any weighted graph with the
structure of a complete bipartite graph has a rank be-
tween 2 and ∣G∣. This means that even if a computa-
tional problem has a complete bipartite graph structure,
its adjacency matrix may still have a high rank if the
edges are weighted, thus preventing efficient implemen-
tation on SPIM.

The authors of [34] proposed constructing Ising prob-
lems with tunably hard coupling matrices with exactly
known rank. This family of constructed Ising problems
is known as the Wishart planted ensemble, and they show
a hardness peak for relatively small rank

R ≈ 1.63 + 0.073N, (6)

where N is the number of spins. This is not ideal as
the required rank will increase linearly with the size of
the problem N to produce the hardest problems, but it
could still serve as a benchmark for small-scale SPIM-
type devices since at N ≈ 100, the hardest problem only
has rank R ≈ 8.

B. Weakly NP-Complete Problems and Hardware
Precision Limitation

The authors of [25] proposed a mapping from the knap-
sack problem with integer weights to an Ising problem
with a coupling matrix J that can be represented by
Eq. (4) with rank(J) = 2, which does not grow with the
size of the problem. The problem is defined as follows:
Given a set of items, each having value vi and integer
weight wi > 0, we would like to find a subset of the items
that maximize the total value of items in the subset while
satisfying a constraint where the total weight of items in
the subset is not greater than a given limit W . The op-
timization version of the knapsack problem with integer
weights is known to be NP-hard [26]. Hence, it was ar-
gued that the linear combination method can efficiently
implement the Ising formulation of NP-hard problems on
SPIM.

Following a similar mapping strategy, we note that it
is possible to use a single rank-1 Mattis-type matrix to
represent the NP-complete number partitioning problem
(NPP), which can be stated as follows: given a set of N
positive numbers, is there a partition of this set of num-
bers into two disjoint sets such that the sums of elements
in each subset are equal? This can be easily mapped
to the minimization problem of the Ising Hamiltonian
HNPP(s) = (∑

N
i nisi)

2
, where ni are numbers given in

the set, and si ∈ {−1,+1} are Ising spins, which denote
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which subset ni is assigned to. This Ising Hamiltonian
has a coupling matrix Jij = −ninj , which is of the Mattis-
type, so one would expect that SPIM can readily imple-
ment any number partitioning problem without using any
special rank-increasing methods mentioned in the intro-
duction.

However, these two examples do not demonstrate
that SPIM can efficiently implement computationally in-
tractable NP-hard problems. For a number partitioning
problem with N integers in the range [1, S], there exists
an algorithm that solves the problem in time scaling like
O(NS) [35]. This is known as a pseudo-polynomial time
algorithm because if we consider the number of binary
digits L required to represent the largest integer S in the
problem, then it is given by L = ⌈log2 S⌉. The algorithm
has running time scaling like O(N2L), which still grows
exponentially as L increases.

Problems with such pseudo-polynomial time algo-
rithms belong to the weakly NP-complete class, for which
increasing problem size alone (in terms of N for the num-
ber partitioning problem) is insufficient to make it com-
putationally hard. These problems are only computa-
tionally intractable (i.e., having only an algorithm whose
run time grows exponentially) if the number of digits
used to represent the maximum input L grows. If the
number of digits representing the maximum input is al-
lowed to grow, in both of the above mappings to the Ising
Hamiltonian, the number of digits in the coupling matrix
elements Jij will also have to grow.

Hence, to simulate a weakly NP-complete problem
whose solution requires exponentially growing resources
on a classical computer, the precision of SPIM optical
hardware will need to grow to encode larger integers rep-
resented by more binary digits L involved in these prob-
lems. This is unlikely to be realized in experiments be-
cause the precision with which coupling matrices can be
implemented in SPIM is a fixed number of significant
digits, likely much smaller than problem input sizes of
practical interest.

Given that NPP with limited binary precision is not
NP-hard, studying the statistical properties of random
NPP instances is still interesting because it may inform
potential modifications or constraints to the problem that
can increase its complexity. Historically, NPP was ana-
lyzed in [36], with subsequent extensive rigorous study
in [37]. It was found that the average hardness of a ran-
domly generated NPP instance, where N integers are uni-
formly randomly selected from the range [1,2L], is con-
trolled by a parameter κ = L

N
. When κ > κc, they require

O(2N) operations to solve, but when κ < κc, average
problem instances require O(N) operations to solve. We
demonstrate a short basic derivation of the critical pa-
rameter κc = 1 in the limit of N →∞ below, which is the
only parameter responsible for characterizing the phase
of the problem, whether it is a “hard” phase (κ > κc) or
“easy” phase (κ < κc).

One can introduce the signed discrepancy D of the

numbers, given the binary variables si [38] as

D =
N

∑
i=1

nisi. (7)

D can be interpreted as the final distance to the origin
of a random walker in one dimension who takes steps to
the left (si = −1) or to the right (si = +1) with random
stepsizes (ni). One can calculate the average number of
walks that ends at D as

Ω(D) = ∑
{si}

⟨δ (D −
N

∑
i=1

nisi,)⟩ (8)

where ⟨⋅⟩ denotes averaging over the random numbers n
and δ is the Kronecker-delta function. For fixed {si} and
large N , the distribution of D can be treated as Gaussian
with mean

⟨D⟩ = ⟨n⟩
N

∑
i

si (9)

and variance

⟨D2⟩ − ⟨D⟩2 = N (⟨n2⟩ − ⟨n⟩2)

=
N

12
22L (1 +O(2−L))

(10)

Hence, to the leading order in L, one can express the
probability of the walk ending at a distance D as

p(D) =
2
√
3

2L
√
2πN

exp(−
6D2

22LN
) . (11)

To derive the explicit expression for the average number
of walks that ends at a distance D from the origin, Ω(D),
we must consider that our random walk takes place on
a 1-D lattice with lattice spacing 2. In this setup, the
walker’s movements are restricted to even or odd num-
bers, depending on whether the sum ∑nj is even or odd.
As a result, we obtain

Ω(D) = 2N2p(D). (12)

One can get

log2Ω(0) = N (κc − κ) , (13)

with the final expression

κc = 1 −
log2N

2N
−

1

2N
log2 (

π

24
) . (14)

This value, denoted as κc, is crucial for indicating the
phase transition. When κ < κc, on average, there exists
an exponential number of perfect partitions where the
discrepancy D = 0; however, when κ > κc, none exists.

Another essential aspect of such a simple random walk
model is the possibility of tracing the effects of finite size.
For instance, even with a relatively small system size of
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around N ≈ 17 units, the critical value of κc ≈ 0.9 is due to
the finite-size scaling window of the transition. These ef-
fects become more pronounced in hardware systems that
operate with limited variables.

This statistical analysis aligns with our previous dis-
cussion, which suggested that to generate computation-
ally hard NPP instances, the number of integers N and
binary digits L must increase, which can be challenging
in practice. Nevertheless, despite its limitations, NPP is
a suitable platform for integrating additional modifica-
tions or constraints, making it adaptable for deployment
on hardware with limited physical resources.

The multiprocessor scheduling problem [39] stands out
among the conventional NPP modifications. It involves
distributing the workload across parallel computers to
minimize overall runtime. The transition can be detailed
by mapping it onto a mean-field anti-ferromagnetic Potts
model. In the multiprocessor scheduling problem, we
are given q identical processors and N independent tasks
with running times ai (instead of numbers ni). The ob-
jective is to create a schedule to assign the N tasks to the
q processors to minimize the longest task finishing time

T (s) =max
α
{Aα =

N

∑
i=1

aiδ(s(i) − α)} , (15)

where s(i) denotes which processor task i is assigned to,
and Aα represents the total workload of processor α. The
critical factor is whether two tasks are on the same pro-
cessor. It is convenient to encode the schedules using
Potts vectors [40] since this reflects the symmetry of the
problem. It was shown that this results in a different
critical value for the easy-hard phase transition (that is
less than 1 for q > 1):

κc =
log2 q

q − 1
−

1

2N
log2 (

2πN

3qq/(q−1)
) . (16)

Such a shift is beneficial in our context because one re-
quires smaller precision to achieve the same complexity
on the hardware.

A more straightforward approach is to consider the so-
called constrained number partitioning problem (CNP),
which will be discussed in more detail in Section V. It is
a variation of the original NPP where, apart from split-
ting integers into groups with equal sums, we also aim to
meet an additional requirement known as a cardinality
constraint. This constraint ensures that the difference
between the numbers of integers in one group and an-
other equals a specific value.

The NPP is a good platform for various modifications,
even though it is unsuitable for implementation on SPIM
in its original form. Modifications can increase complex-
ity within constrained resources and even combine them.
For example, one could tackle the multiprocessor schedul-
ing problem while adhering to cardinality constraints.
This versatility allows for fine-tuning parameters to ob-
tain tasks with specific complexity.

C. Limitation of Low Rank Matrix Mapping

Our investigation in Section III A suggests that low-
rank graphs often exhibit highly constrained connectiv-
ity, such as complete bipartite or tripartite graphs. This
is expected since a low-rank adjacency matrix represents
a low-dimensional manifold with reduced degrees of free-
dom. Consequently, the problems they represent are not
likely to be NP-hard. Section III B further indicates that
to describe a problem which requires exponentially grow-
ing time to solve on a classical computer, it is necessary
to either allow the rank or the precision of each matrix
element to increase with the problem size. This evidence
strongly suggests the following hypothesis may be true:
“It is not possible to find constant integers L and K
such that there exists an Ising problem with coupling
matrix J with rank K and maximum input precision
L = ⌈log2 (maxi,j (Jij))⌉ such that the number of opera-
tions required to find its ground state scales as O (2N),
where N is the number of spins in the Ising problem.”
Given this understanding, it is still possible to utilize
SPIM to tackle NP-hard problems with the following two
approaches:

1. Find approximate solutions to hard problems by
approximating them with a low-rank matrix and
then solving the approximate problem with SPIM.
This is discussed in Section IV.

2. Identify NP problems whose precision requirement
L and rank requirement K grow slowly as the prob-
lem size N increases while maintaining their hard-
ness. One possible candidate problem is presented
in Section V.

IV. LOW RANK APPROXIMATION

Building on our understanding of low-rank problems,
this section explores the practical application of low-rank
approximations.

A. Decomposition of Target Coupling Matrix

Many strongly NP-complete problems have been
mapped to Ising problems with only polynomial overhead
[26]. However, the resultant coupling matrices usually
have no fixed structure beyond being real and symmet-
ric, so a general method to decompose any target cou-
pling matrix J into the form given by Eq. (4) is required.
This can be achieved by singular value decomposition
(SVD), which decomposes any matrices J into vectors u

and v such that Jij = ∑
R
k=1 λku

(k)
i v

(k)
j , where R is the

rank of the matrix J. For any symmetric J, it will lead
to u = v, so SVD will produce the smallest possible set
of Mattis-type matrices that represents the target matrix
[41].
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However, SVD gives no upper bound to the number of
digits required in components of u or v to represent J,
so the problem presented in Section III C still exists. It
is not possible to guarantee that a given coupling matrix
J can be represented by vectors u(k) whose precision is
limited.

B. How Fields Influence Rank

Ising-type problems with a magnetic field (i.e., a term
linear in the spins in the Hamiltonian) can be reduced to
a problem without a field by adding an auxiliary spin. If
the initial Hamiltonian is

H(s) = −
N

∑
i,j=1

Jijsisj −
N

∑
i=1

hisi, (17)

then the corresponding Hamiltonian without field is

Hh
(s) = −

N

∑
i,j=0

Jh
ijsisj , (18)

with Jh
i0 = Jh

0i = hi and an additional free constant h0.
The auxiliary spin is fixed as s0 = 1. What is the rank
of this new coupling matrix with respect to the original
one? Note that the coupling matrix Jh in Eq. (18) is of
the form

(
h0 h
hT J

) . (19)

As long as h0 ≠ 0, via elementary row and column oper-
ations, one can transform

(
h0 h
hT J

)→ (
h0 0
0 J − 1

h0
hTh
) , (20)

and hence

rankJh
= rankh0 + rank(J −

1

h0
hTh) ≤ rankJ + 2. (21)

C. Low Rank Approximation of Coupling Matrices

Given any Ising problem with external fields, we can
convert it into another Ising problem with no external
field and a coupling matrix with a rank at most two
higher. We can then use SVD to decompose the resultant
coupling matrix into the linear combination of Mattis-
type matrices. This decomposition, in general, produces
N terms, where N is the dimension of the coupling ma-
trix, and the precision of each term is not bounded. Un-
der low-rank approximation, we retain only the K largest
λk terms in the sum produced by SVD, i.e.

J̃ij =
K

∑
k=1

λkξ
(k)
i ξ

(k)
j , (22)

where K < rank(J), and J̃ is the low rank approximation
of the exact coupling matrix J. Because now only an
approximate solution is required, the precision in ξ

(k)
i

can also be limited by truncating excess digits.
The low-rank approximation method was used in [42]

to find an approximate solution to the strongly NP-
complete problem of maximum cut, in which one is re-
quired to find a partition of the node set V of a graph
G(V,E) such that the partition maximizes the total
weight of edges that cross the partition. It was shown
that even with the precision in ξ

(k)
i limited to multiples

of 1/(∣V ∣K2), the proposed algorithm can still find an
approximate solution within O (∣V ∣2/

√
K) of the maxi-

mum cut in time polynomial in ∣V ∣. However, this prob-
lem remains largely unexplored in the context of Ising
machines. It is unclear how the number of Mattis-type
matrices K and the truncation of ξ(k) will impact the
quality of approximate solutions found by Ising machines
and to what extent these two quantities can trade off
against each other to maintain the required quality of
the approximate solution.

D. Low-Rank Approximation of Random Coupling
Matrices

To investigate the feasibility of using a low-rank ap-
proximation to find approximate solutions to Ising prob-
lems with SPIM, a random interaction matrix for an Ising
problem was generated and then decomposed into con-
stituent Mattis-type matrices using singular value decom-
position (SVD). Only matrices corresponding to the K
largest singular values λk were retained, while the re-
maining matrices were discarded. Each element of the
retained Mattis-type matrices was rounded to the near-
est 2−L. This resulted in a rank K approximate matrix
with precision L. The approximate Ising problem was
then solved through a simulation of SPIM, where a ran-
dom group of spins was chosen at each step and flipped,
and the new Ising energy of the system was calculated.
The spin flips were accepted only if the new Ising energy
decreased. As the simulation progressed, larger groups
of random spins were chosen to avoid being trapped in
local minima of the Ising energy landscape.

Figure 1 compares the quality of solutions obtained
using varying values of K and L. Figures 1(a) and (b)
show results from the low-rank, limited-precision approx-
imation of a random 1000-vertex unweighted connectivity
graph, where each pair of vertices has an equal probabil-
ity of being connected or unconnected. Figures 1(c) and
(d) show results from a sparse 3-regular random graph,
where each vertex is connected to 3 other random ver-
tices. From Figs. 1(a) and (c), we observe that the qual-
ity of solutions obtained from 8-bit precision approxima-
tions is indistinguishable from solutions obtained from
full-precision calculations, regardless of the rank of the
approximate coupling matrix. This suggests that SPIM
can still find highly accurate approximate solutions to
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Figure 1. (a) The energy of approximate solutions is plotted
against the rank of the approximate coupling matrix. The ex-
act interaction matrix represents a random, unweighted, undi-
rected graph with 1000 vertices, all with anti-ferromagnetic
couplings, where each edge has an equal probability of having
a value of 0 or -1. Each set of parameters uses 100 different
random sequences of spin flips to produce the scatter of final
energies. The coupling strengths are rounded to the nearest
2−8 in the approximation. (b) The energy of approximate
solutions is plotted against the precision of the approximate
coupling matrix. A full-rank (R = 1000) matrix and two low-
rank approximations with ranks R = 256 and R = 64 are used
for each precision level. (c) and (d) follow the same structure
as (a) and (b), but the exact interaction matrix represents
a random 3-regular graph, again with all non-zero couplings
being anti-ferromagnetic.

Ising problems with both dense and sparse coupling ma-
trices, even with limited precision.

This observation is further supported by Figs. 1(b) and
(d). It can be seen that with at least 6 bits of preci-
sion, SPIM can find low-energy solutions comparable to
those found by full-precision machines using the same
algorithm. However, the loss of accuracy is more pro-
nounced in dense graphs than in sparse graphs.

However, the quality of the approximate solution is
highly dependent on the rank of the approximated cou-
pling matrix. In both dense and sparse graphs, the
energy of the approximate solution increases rapidly as
the rank of the approximate coupling matrix decreases.
Therefore, for a general random matrix, the precision of
the Mattis-type matrices is not a significant factor in the
quality of the approximate solution, but the rank of the
approximate matrix is. The dependence on rank is likely
to limit the efficiency of SPIM hardware on random Ising
problems because the computation of Ising energy contri-
butions from each rank-1 component by SPIM must be
time-multiplexed, leading to much longer computation
times per iteration.

In Section IVE, we discuss a practical application in
finance where a low-rank matrix can often approximate
the matrix in question, making it suitable for implemen-

tation in SPIM hardware.

E. Low Rank Approximation for Portfolio
Optimization

Low-rank matrices can arise during the construction
of securities portfolios in financial analytics. Specifically,
the optimal portfolio is the solution to a model-dependent
quadratic unconstrained mixed optimization (QUMO)
problem. Under an equal-weighting constraint, which we
will explain below, this transforms into a quadratic un-
constrained binary optimization (QUBO) problem that
SPIMs can solve. Portfolio optimization involves creat-
ing an investment portfolio that balances risk and return.
The objective is to allocate assets yi optimally to max-
imize expected returns µ while minimizing risk φ. In
modern portfolio theory, this problem is formulated in
the Markowitz mean-variance optimization model [43–
45] with the objective function:

H = (1 − λ)φ − λµ,

= (1 − λ)wTSw − λmTw, (23)

where the scalar λ ∈ [0,1] quantifies the level of risk aver-
sion, and wi ∈ [0,1] with ∑N

i wi = 1 are portfolio weights
that describe the proportion of total investment in each
asset. S is the covariance matrix of N assets with ele-
ments Sij = Cov(yi,yj), and mi is the expected return
of asset yi. The covariance matrix S and return fore-
cast vector m are derived from historical data, the lat-
ter of which can be formulated using the capital asset
pricing model [46]. Markowitz mean-variance portfolio
optimization naturally maps to the QUMO abstraction
[47]. However, with equal weighting, the problem con-
verts to QUBO. Equal-weighted portfolio optimization,
where wi ∈ {0,1/q} for q selected assets, has been shown
to outperform traditional market capitalization-weighted
strategies [48–50].

In this case, weights wi can be transformed to Ising
spins si ← 2qwi−1. We extend the model to include a car-
dinality constraint that limits the portfolio to a specified
number of assets, maintaining the QUBO abstraction.
This is equivalent to constraining q to a predetermined
value. Diversification can be controlled through cardi-
nality constraints, providing an additional mechanism to
manage portfolio volatility. The objective function can
be expressed as an explicit Ising Hamiltonian

H = (1 − λ)wTSw − λmTw + η(q1Tw − q)2

=
N

∑
i,j

(
1 − λ

4q2
Sij + 1) sisj

+
N

∑
i

⎛

⎝
2η(N − q) −

λmi

2q
+
1 − λ

2q2

N

∑
j

Sij

⎞

⎠
si + c,

(24)

where parameter η controls the magnitude of the car-
dinality constraint and c is a constant offset. We can
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identify the Ising coupling matrix elements as Jij =
1−λ
4q2

Sij + 1, and external magnetic field field strength as
hi = 2η(N−q)−

λmi

2q
+ 1−λ

2q2 ∑
N
j Sij . By introducing an aux-

iliary spin to absorb linear fields with the method given
in Section IV B and discarding constants, the objective
function becomes H = −sTJhs. Realizing portfolio opti-
mization in SPIM architectures requires coupling matrix
J to be low rank. This is achieved through low-rank fac-
tor analysis (FA), a low-rank approximation technique
common in quantitative finance [51].

To compute coupling matrix J, covariance matrix S is
first estimated from historical data on the set of asset re-
turns r. However, accurately estimating S from historical
data can be challenging due to noise, high dimensional-
ity, and limited data [52]. FA assumes observed data are
linearly driven by a small number K of common factors,
such that r = c +Bf + ε, where c ∈ RN is a constant vec-
tor, B ∈ RN×K is the factor loading matrix with K ≪ N ,
f ∈ RK is a vector of low-dimensional common factors
and ε ∈ RN is uncorrelated noise. The unobservable la-
tent variables f capture the underlying patterns shared
among the observed variables. FA implies the covari-
ance matrix consists of a positive semi-definite low-rank
matrix plus a diagonal matrix such that the transformed
covariance matrix is S

′

= BBT +Ψ [53]. For low-rank fac-
tor analysis, rank(BBT ) ≤ K [52]. The diagonal matrix
Ψ becomes a linear field term in the binary formulation,
and it follows from Eq. (21) that S

′

remains low rank.
Indeed, in the Ising QUBO abstraction with auxiliary
variable, coupling matrix Jh has rankJh ≤ rankJ + 2 ≤

rankS
′

+ rank(1 ⊗ 1T ) + 2 = rankS
′

+ 3. Therefore, the
transformed coupling matrix remains low rank. Figure
(2) illustrates the decomposition of the covariance matrix
to its low-rank form and shows the proximity of portfo-
lios constructed in the full-rank and low-rank paradigms.
The full universe of stocks can be vast, so decomposing
covariance matrices into low-rank forms provides compu-
tational advantages in subsequent calculations. For ex-
ample, the New York stock exchange contains over 2300
stocks, whilst in Fig. (2), we consider only the 503 stocks
tracked in the S&P 500 index.

For a quadratic unconstrained continuous optimization
problem, if the coupling matrix is positive semi-definite
as the covariance matrix is, then the problem is convex
for any linear field term. However, for QUBO problems,
even if S and hence J is positive semi-definitive, the prob-
lem is not necessarily easy to solve. The reason is that
the binary constraint makes the feasible region discrete,
not convex, which is why QUBO problems are generally
NP-hard. SPIMs derive a temporal advantage over clas-
sical computing due to optical hardware implementing
fast and energy-efficient computation. This is partic-
ularly crucial in high-frequency trading, where optimal
portfolios must be calculated over microseconds to mini-
mize latency in placing orders [54, 55].

Figure 2. (a) Frequency histogram of eigenvalues obtained
from the covariance matrix of S&P 500 stock data. There
are only a few dominating eigenvalues, and most eigenvalues
are orders of magnitude smaller than the dominant ones. (b)
Equal-weighted cardinality-constrained portfolios constructed
from the full rank covariance matrix S (blue), K = 20 low
rank matrix S

′

(orange), and K = 5 low rank matrix (green).
Here, λ = 0.5, η = 1, and q = 20. The portfolios were built by
minimizing Eq. (24) using commercial solver Gurobi.

F. Low-Rank Matrices in Restricted Boltzmann
Machines

In Section III A, we mentioned that the minimum rank
of a weighted complete bipartite graph is 2. The re-
stricted Boltzmann machine (RBM) [56, 57] is a com-
putational model naturally defined on complete bipartite
graphs. Thus, it is sensible to consider encoding low-rank
approximations of RBMs within the SPIM paradigm.

Previous studies have shown that RBMs can provide
good results when trained with low-rank approximations
for collaborative filtering [58]. Recent advancements have
explored low-rank approximations in unrestricted Boltz-
mann machines (UBMs). Notably, UBMs trained on Spa-
tial Photonic Ising Machine (SPIM) based optical hard-
ware have demonstrated promising results. This novel
approach leverages the computational power of optical
systems for machine learning tasks, offering significant
performance improvements [25].

Although UBMs might offer greater modeling flexi-
bility due to their unrestricted connectivity, they suf-
fer significant computational downsides. Each step in
the UBM training algorithm involves navigating a com-
plex energy landscape, leading to inefficient convergence.
This inefficiency is particularly problematic for large-
dimensional datasets, where training time and compu-
tational resources can become prohibitively high [25].

In contrast, RBMs can be framed as minimal rank
problems. Their bipartite nature simplifies the training
process and reduces computational complexity, making
them more practical for SPIM applications. The train-
ing efficiency of RBMs was significantly enhanced by
Hinton’s method of minimizing contrastive divergence,
which simplified the optimization of these models [57].
This minimal rank framework suggests that RBMs can
be trained more efficiently, so they are often preferred for
collaborative filtering and feature learning tasks. The
theoretical foundations of harmony theory, laid out by
Smolensky in 1986 [56], underpin the information pro-
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cessing capabilities of both RBMs and UBMs.
In general, RBMs, exhibiting lower computational de-

mands, are valuable tools in machine learning. Recent
research demonstrating the efficacy of low-rank UBMs
on SPIM hardware [25] indicates that low-rank RBMs
could be a promising direction for future applications of
SPIM devices.

V. CONSTRAINED NUMBER PARTITIONING
PROBLEM

To further illustrate the utility of SPIMs in tackling
complex problems, we introduce the constrained number
partitioning problem (CNP), examining its characteris-
tics and computational challenges.

A. Definition and Characteristics of the
Constrained Number Partitioning Problem

In Section III B, it was shown that although the Num-
ber Partitioning Problem (NPP) can be mapped to an
Ising problem with a rank one coupling matrix, its com-
plexity grows as O(N2L). Therefore, solving difficult
NPP instances would require increasing the precision L
of SPIM hardware. The hardness of a random instance
of NPP was characterized in [38, 59], which presented
numerical evidence suggesting that the average complex-
ity of a random instance is directly correlated with the
probability of a perfect partition. A perfect partition is
a partition where the difference in the sum of the ele-
ments in the two subsets is 0 or 1. The studies suggested
that when the number of integers N in the problem is
large, if the probability of a perfect solution in a random
instance tends to 1 (i.e., limN→∞ P(perfect solution) =
1), then the average problem is easy. Conversely, if
limN→∞ P(perfect solution) = 0, then the problem is
hard. It was rigorously shown that there is a phase tran-
sition separating the regimes of the asymptotic existence
of a perfect solution, controlled by a parameter κ = L/N ,
with P(perfect solution) → 0 when κ > κc = 1. This an-
alytical study corroborates our previous discussion that
when N is large, L must also be large for the problem to
be hard.

The authors of [60] generalized these results to another
problem known as the Constrained Number Partitioning
(CNP) problem. In a random CNP problem, there exists
a set of N integers uniformly and randomly chosen in
the range [1,2L], under the constraint that the set must
be partitioned into two subsets whose cardinalities differ
by a given value S, known as the bias. The goal is to
minimize the difference in the sum of elements in each
subset, known as the discrepancy. Given a CNP problem
with integers n1, n2, ..., nN and bias S, it can be mapped

to an Ising problem by defining the Ising Hamiltonian

H = −(
N

∑
i

nisi)

2

+A(
N

∑
i

si − S)

2

=
N

∑
i,j

(−ninj +A) sisj − 2AS
N

∑
i

si +AS2,

(25)

where each spin si denotes which subset the number ni

is assigned to. The first term on the first line of Eq. (25)
minimizes the discrepancy between sums of two subsets,
while the second term enforces the constraint that the
cardinalities of subsets must differ by S, as long as con-
stant A is sufficiently large. The second line of Eq. (25)
puts the energy into the explicit Ising form, where cou-
pling matrix elements are Jij = ninj −A and there is an
external field with field strength −2AS. By introducing
an auxiliary spin as mentioned in Section IV B, the ex-
ternal field term can be subsumed into the coupling term
at the cost of increasing the rank of the coupling matrix
by up to two and increasing the dimension of the cou-
pling matrix by one. The original coupling matrix has
rank two, so this problem will have a coupling matrix of
rank up to four when implemented on SPIM hardware,
regardless of the number of integers in the problem.

It was found that the probability of the existence of a
perfect solution for a random CNP instance is controlled
by κ and an additional parameter bias ratio b = S/N .
It was rigorously shown that asymptotically as N → ∞
when b > bc =

√
2 − 1, it is trivially easy to find the

best partition because the bias is so large that it is al-
most always optimal to assign all largest elements to the
smaller subset. This is known as the "ordered" phase.
When b < bc, the probability of existence of a perfect so-
lution has a similar phase transition as in NPP, where
P(perfect solution) → 0 when κ > κc. However, the criti-
cal value κc was found to be a function of b, and κc moves
towards 0 as b increases towards bc.

This suggests that CNP can be a perfect candidate for
implementation on SPIM hardware because an average
random CNP instance can be computationally hard even
if L ≪ N (i.e. κ ≪ 1) as long as b is sufficiently close to
bc. Two areas need to be explored to establish that this
problem is computationally hard and suitable for imple-
mentation on SPIM. Firstly, the authors of [60] did not
rigorously show that the existence of a perfect solution
is correlated with the hardness of the CNP problem in-
stance like it is in NPP. Secondly, in a system with finite
size N , there will exist a non-zero value of κc,min which
leads to the smallest number of precision L required for
the average problem to be hard. This value is obtained
when bias ratio b is as close as possible to bc given that S
must be an even or odd integer depending on N . Finite-
size effects are likely to make the transition between the
easy and the hard phase gradual, with an intermediate
region where the probability of having a perfect solution
is close to neither 0 nor 1. In the following subsection,
we will numerically investigate this phase transition with
a finitely sized system and understand the precision re-
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quirement for a moderately sized CNP problem that is
still computationally hard.

B. Computational Hardness of Random CNP
Instances

Figure 3. (a) The probability of the existence of a perfect
solution is plotted against various problem sizes N at fixed
values of bias S. (b) The colour map shows the probability of
the existence of a perfect solution in a random CNP problem
instance with N integers and various bias values, and the inte-
gers are chosen uniformly and randomly in the range [1,212].
The probability at each point in the phase space is calculated
over 200 random instances. Three phases are identified in the
figure, separated by the orange and red dash lines. Region 1,
2, and 3 correspond to the "ordered", "hard", and "perfect"
phases proposed in [60]. Region 1 in the graph is not drawn
because it is likely to be trivially easy to find the optimum
partition in this region for an average problem instance, so it
is not meaningful to investigate the probability of a perfect
solution’s existence in this region.

As the number of integers N in a CNP problem in-
creases, the probability of finding a perfect partition will
undergo a phase transition from 0 to 1, but the critical
value of Nc where this happens is expected to increase
as bias S of the problem increases because it is increas-
ingly challenging to balance the sums in each subset while
fulfilling the constraint of greater cardinality difference.
This trend is observed in Fig. 3(a). A complete picture
of the phase transition landscape is shown in Fig. 3(b),
which is the probability of the existence of a perfect so-
lution in a random CNP problem with various numbers
of integers N and bias S. We can observe a “hard” phase
in which the probability of a perfect solution’s existence
is low (labelled as region 2 in the colour map) and a
“perfect” phase in which the probability of a perfect so-
lution’s existence is close to 1 (labelled as region 3). It
can be observed that the phase transition between the
“hard” and “perfect” phases is not sharp, and there exists
an intermediate region where the probability of a perfect
solution being present is neither close to 0 nor 1. This
can be attributed to the finite system size N . Unlike the
theoretical studies presented in [60], which depicts the
asymptotic behaviour when N →∞, this phase diagram
models a finite system implementable in SPIM hardware.
From the phase diagram, we observe that region 2, where
the probability of a perfect solution’s existence is close to

0, extends into N values much greater than L = 12 used
in the simulation. Hence, this numerical experiment sug-
gests that it is possible to realize CNP problem instances
with size N much greater than hardware precision L on
SPIM and still keep the parameters in region 2, where
the probability of a perfect solution being present is very
low.

Next, we must understand if problem instances in re-
gion 2 represent computationally hard instances. The ex-
isting state-of-the-art pseudo-polynomial time algorithm
for number partitioning problems is the complete differ-
encing algorithm [38]. As shown in Fig. 4, the algorithm
performs the search in a depth-first manner through a
tree. The root comprises all integers in a descending or-
der. At each node with more than one element, the node
leads to new branches. The left branch takes the differ-
ence of the first two elements of the parent node, denot-
ing the decision to assign the two leading elements into
two different subsets. The right branch takes the sum of
the first two elements of the parent node, denoting the
decision to assign the two leading elements to the same
subset. The only integer in each leaf node indicates the
final discrepancy corresponding to the partition defined
by the route from the root to the leaf.

Figure 4. Schematic search tree of the complete differencing
algorithm.

This algorithm has a worst-case time complexity that
grows exponentially with N but relies on pruning rules
to help it avoid searching through large chunks of the
solution space that cannot produce a solution better than
the current best-found solution. For example, an entire
branch can be discarded when the difference between the
largest element and the sum of all other elements exceeds
the best-known solution. It is known that for random
NPP instances that have size N much greater than the
precision limit L, this algorithm, on average, only needs
to visit O(N) number of nodes in the search tree to find
the optimal solution. This remarkable reduction in search
time from the worst case of O(2N) to O(N) is because
the probability of the existence of a perfect solution is
close to 1 in the average case (when N ≫ L). Hence,
the algorithm will likely quickly find the perfect solution
and terminate because no better solution is possible, thus
pruning away the vast majority of the solution space.

This algorithm has also been adapted for a particular
case of CNP known as the balanced number partitioning
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problem, where the bias S is set to 0 [61]. The adapted al-
gorithm is still efficient when N ≫ L. This is unchanged
from the NNP case - because the algorithm will likely
find the perfect solution quickly and terminate before
searching an exponential number of nodes in the solu-
tion space. Hence, it is reasonable to expect that even
in the case of CNP, to avoid searching the exponentially
large solution space, there needs to exist exponentially
many degenerate optimal solutions scattered in the solu-
tion space so that any “good” algorithm can quickly find
one of them and terminate before visiting an exponential
number of nodes. In other words, if the number of de-
generate ground states is not growing exponentially with
N , while the total solution space is constantly increasing
as 2N , this is a strong indication that the problem will
be computationally hard.

Figure 5. (a) The number of configurations the modified
complete differencing algorithm must search to determine if a
perfect solution exists in a CNP problem instance as a func-
tion of size N and bias S. (b) Degeneracy of the ground state
as a function of size N for CNP problems with different bias
ratio parameters b. Integers of the CNP instances were drawn
uniformly at random from the range [1,212].

Here, we investigate two versions of the CNP problem.
The first is a decision problem: given a CNP instance,
determine if a perfect solution exists. The complete dif-
ferencing algorithm was adapted by enforcing the bias
constraint and then used on many random CNP prob-
lem instances with given size N and bias S. The number
of possible configurations that must be searched before
the determination can be made is shown in Fig. 5(a). It
can be observed that the number of searched configura-
tions first increases exponentially with N before hitting
a peak. We note that the average hardness of problems,
as indicated by the number of configurations searched,
peaks at around the same time as the phase transition
from the "hard" phase to the "perfect" phase shown in
Fig. 3(a). This is because if a perfect solution exists, the
algorithm can locate it early on without searching the
entire configuration space. If no perfect solution exists,
the algorithm will likely have to search most part of the
configuration space to rule it out. Hence, our numerical
test shows that CNP and NPP are likely to behave sim-
ilarly, with the existence of a perfect solution correlated
with the problem being easy.

The second version of CNP problems we investigate
is a harder optimization problem: given a CNP instance,

find the best partition, regardless of whether it is perfect.
Figure 5(b) shows the degenerate ground states in ran-
domly generated CNP problem instances with different
bias parameters b = S/N but with fixed precision L = 12.
When N is smaller than L, it can be observed that the
number of degenerate ground states did not grow expo-
nentially with N for all values of bias ratio parameters
b, which corresponds to the lower-left corner of region 2
in Fig. 3(b). When N is larger than L, the number of
degenerate ground states grows exponentially with N for
smaller values of b. For the largest considered b value of
0.4, the number of degenerate ground states is approxi-
mately constant by an order of magnitude, even as the
total solution space grows exponentially with N . This
strongly suggests that for the largest bias ratio b value,
the problem remains computationally hard even as N
grows while the precision L is fixed. Hence, random CNP
problems with large bias ratio values can be meaningful
benchmark problems for testing the performance of SPIM
hardware in solving computationally hard problems be-
cause they have limited precision requirements and can
be mapped to an Ising problem with a low-rank coupling
matrix, as we show in the following subsection.

VI. TRANSLATION INVARIANT PROBLEMS

Beyond low-rank and constrained problems, transla-
tion invariant problems offer another interesting domain
for SPIM applications. This section investigates how
these problems can be effectively represented and solved
using SPIMs.

A. “Realistic” Spin Glass

The correlation function method enables SPIM to en-
code translation invariant (or cyclic) coupling matrices.
This type is important, and the hard problem is “realis-
tic” spin glasses that live on an almost hypercubic lat-
tice in d dimensions [62, 63]. The modified Mattis-type
matrix encoding these problems is of the form given by
Eq. (3), where

G(i−j) = {
HG(i − j) for ∣i − j∣ = Lα, α ∈ {0,1, . . . , d − 1}

0 otherwise.
(26)

Here, HG(k) could be any function. It should be noted
that this encoding scheme introduces a few additional
connections that do not belong to the hypercubic graph.
For example, on the square 4×4 graph labelled in Fig. 6,
vertices 4 and 5, 8 and 9, and 12 and 13 are not neighbors
in this 2-dimensional lattice but would also be connected.
These extra connections are thus known as “accidental”
connections. One could create “glassy” coupling matri-
ces by choosing HG(k) = cos(ωk) to be sinusoidal with
a suitable frequency. That is precisely how (up to de-
cay over distance) the Ruderman-Kittel-Kasuya-Yosida
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Figure 6. Connections on the 4 × 4 square lattice created by
the correlation function method with G(i − j) as in Eq. (26).
Intended connections are shown as black solid lines, while
accidental connections are shown as red dashed lines.

exchange coupling gives rise to the anomalous magnetic
behaviour measured in dilute magnetic ions in insulators
that kick-started the field of spin glasses [63–66].

Another way to create frustration is to set HG(k) = 1
identically but add additional anti-ferromagnetic connec-
tions to next-nearest neighbors with a similar method as
in Eq. (26). Spin models with such coupling are also
known as J1-J2 models [67, 68]. Using the correlation
function method, these highly frustrated coupling matri-
ces can be realized on SPIM architecture, and the per-
formance of sampling-based algorithms implemented on
SPIM for minimizing the Ising Hamiltonian of these spin
glasses can be investigated.

B. Circulant Graphs

When an N ×N shift matrix P acts on a vector x =
(x1, x2, . . . , xn), the components of x shift such that the
order of the xi change. We describe P as cyclic or circular
since each component xi is shifted by one around a circle.
P2 turns the circle by two positions, and every new factor
P gives one additional shift. PN gives a complete 2π shift
of the components of x and therefore PN = IN , where IN
is the N ×N identity matrix. A circulant matrix C is a
polynomial of a shift matrix. In general

C = c0IN + c1P + c2P
2
+ . . . + cN−1P

N−1, (27)

which always has constant diagonals. The eigenvalues λ
of P, given by Px = λx, are the N -th roots of unity. This
follows from PN = IN to get λN = 1. The solutions are
λ = w,w2, . . . ,wN−1,1 with w = exp(2πi/N). The matrix
of eigenvectors is the N ×N Fourier matrix

F =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

⋮ ⋮ ⋮ . . . ⋮

1 wN−1 w2(N−1) . . . w(N−1)(N−1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (28)

with orthogonal columns. Orthogonal matrices like P
have orthogonal eigenvectors, and the eigenvectors of a
circulant matrix are the same as the eigenvectors of the
shift matrix. All information of a circulant matrix C is
contained in its top row c = (c0, c1, . . . , cN−1), with the N

eigenvalues of C given by the components of the prod-
uct Fc. When the adjacency matrix of an undirected
graph is circulant, the eigenvalues are guaranteed to be
real. This is because an undirected graph has a symmet-
ric adjacency matrix, and symmetric matrices have real
eigenvalues.

Figure 7. Possible ground state Ising spin configurations (a)
State S0 where each neighboring spin alternates, and (b) State
S1 where there are two positions, opposite on the ring, for
which neighboring Ising spins are the same. For J < Jcrit the
neighboring couplings dominate and S0 is the ground state,
whereas for J > Jcrit the cross-ring couplings exert a greater
influence and S1 is the ground state.

An example of a graph structure with a circulant ad-
jacency matrix is a Möbius ladder graph. This 3-regular
graph with even number of vertices N is invariant to
cyclic permutations and can be implemented on SPIM
hardware with each vertex of the Möbius ladder graph
representing an Ising spin. The Ising spins are coupled
antiferromagnetically according to the 3N/2 edges of the
Möbius ladder graph. Each vertex is connected to two
neighboring vertices arranged in a ring, and a cross-ring
connection to the vertex that is diametrically opposite,
as illustrated in Fig. (7). When N/2 is even, and for
large cross-ring coupling, no configuration exists where
all coupled Ising spins have opposite signs, and thus, frus-
trations must arise. The Ising Hamiltonian we seek to
minimize is given by Eq. (1) with no external magnetic
field and a coupling matrix J given by the Möbius lad-
der weighted adjacency matrix. The correlation function
method can encode the weights of any circulant graph,
which for Möbius ladders is given by

Jij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1 for ∣i − j∣ = 1,
−J for ∣i − j∣ = N/2,
0 otherwise.

(29)

The two types of coupling – neighboring and cross-ring
– have different coupling strengths, the former fixed at
Jij = −1 whilst we take the latter as an adjustable param-
eter Jij = −J , with J constrained to the domain [0,1].
The ground state takes two configurations depending on
the value of J , as shown in Fig. (7). The two states,
denoted S0 and S1 have Ising energies E0 = (J − 2)N/2
and E1 = 4 − (J + 2)N/2 respectively. For the regime
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J < Jcrit ≡ 4/N , S0 is the ground state whilst for J > Jcrit
the energy penalty due to opposite spins having the
same Ising spin sign becomes large and the ground state
changes to S1. For even N/2 and canonical shift matrix

P = (
0 IN−1
1 0T ) , (30)

where 0 is a column vector of zeros of length N −
1, the weighted Möbius ladder adjacency matrix can
be expressed as J = −P − JPN/2 − PN−1, where
the coefficients of the polynomial in P are c =

(0,−1,0, . . . ,0,−J,0, . . . ,0,−1). The N eigenvalues of J
come from multiplying the Fourier matrix F with vector
c to give

⎛
⎜
⎜
⎜
⎜
⎜
⎝

λ0

λ1

λ2

⋮

λN−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−1 − J − 1

−w − JwN/2 −wN−1

−w2 − Jw2N/2 −w2(N−1)

⋮

−wN−1 − Jw(N−1)N/2 −w(N−1)(N−1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (31)

which simplifies to λn = −2 cos(2πn/N) − J(−1)
n. For

small J , the first term dominates, and the largest eigen-
value is λN/2 = 2 − J . For large J , the second term
has an effect, and the largest eigenvalues are λN/2±1 =

2 cos(2π/N) + J . The eigenvectors of these eigenval-
ues, projected to the nearest corner of the hypercube
[−1,1]N , correspond to states S0 and S1, respectively.
The critical value of J at which λN/2 = λN/2±1 occurs at
Je ≡ 1 − cos(2π/N).

Circulant graphs can be expressed as polynomials of
shift matrices, from which eigenvalues and eigenvec-
tors are calculated. This allows for a mathematically
tractable analysis of the graph structure and its proper-
ties, revealing regions of parameter space for which opti-
mization methods can falter. Moreover, circulant graphs
are technologically feasible on SPIM hardware when uti-
lizing the correlation function method [24]. To see how
circulant graphs can contain non-trivial structures re-
sistant to simple local perturbations, we note that for
Möbius ladder graphs with J ∈ [Je, Jcrit] the eigenvalue
corresponding to S0 is less than that for S1 despite S0

being the lower energy (ground) state. Indeed, the au-
thors of [69] found that gradient-based soft-amplitude
solvers, such as the coherent Ising machine [16–18], will
encounter difficulty in recovering the ground state when
J ∈ [Je, Jcrit] with ground state probability decreasing
as the spectral gap increases. The transformation from
excited state S1 to ground state S0 requires N/2 spin
flips, representing a significant energy barrier to over-
come. Therefore, local perturbations are not enough to
bridge the distance between hypercube corners of the
ground and leading eigenvalue states. This may be over-
come by using SPIM hardware paired with a sampling-
based algorithm to provide feedback during each itera-
tion of the minimization process, particularly if multiple
SPIMs can be coupled to achieve a massively parallel
paradigm that can efficiently sample the phase space of
solutions of circulant graphs.

VII. CONCLUSIONS

SPIMs are emerging physical computing platforms
with distinct strengths and practical constraints, setting
them apart from conventional digital computing tech-
nologies. As advancements in engineering and materi-
als technology continue, these platforms are expected
to see enhanced capabilities. It is, however, impera-
tive to identify problems and methods that can effec-
tively utilize these unique strengths, providing a robust
basis for benchmarking their performance. This paper
identifies several classes of problems that are particu-
larly well-suited for SPIM hardware. SPIMs are shown
to efficiently address practical problems such as portfo-
lio optimization through low-rank approximation tech-
niques. This methodology also presents promising op-
portunities for further research, including the potential
implementation of low-rank restricted Boltzmann ma-
chines on SPIMs. Furthermore, the constrained number
partitioning (CNP) problem, a variation of the classic
number partitioning problem, serves as a valuable bench-
mark for comparing the performance of SPIMs with that
of classical computers. The analytically solvable circu-
lant graph provides insights into the differences in per-
formance between gradient-based algorithms, prevalent
in many current Ising machines, and sampling-based al-
gorithms that can be implemented on SPIMs. Addition-
ally, SPIMs have the potential to realize many “realistic”
spin glasses, extensively studied within the realm of sta-
tistical mechanics, thereby making numerous theoretical
models experimentally viable.

Our study also highlights the importance of precision
and rank in relation to the constraints of SPIM hard-
ware. While low-rank approximations can render prob-
lems more manageable on SPIMs, the precision required
for these approximations can impact computational effi-
ciency and the accuracy of solutions. Therefore, future
research must explore methods to optimize the balance
between rank and precision. Beyond portfolio optimiza-
tion and Boltzmann machines, SPIMs demonstrate po-
tential in solving various NP-hard problems through in-
novative mapping techniques. Advanced decomposition
methods, such as singular value decomposition (SVD),
enable SPIMs to manage more complex coupling matri-
ces, expanding their applicability across different opti-
mization tasks.

In conclusion, SPIMs represent a promising advance-
ment in computational technologies. By focusing on low-
rank approximations, constrained number partitioning,
and the implementation of sophisticated algorithms, this
paper sets the stage for future investigations into the ca-
pabilities and applications of SPIMs. Continued research
and development in this area are crucial for fully realizing
the potential of SPIMs, paving the way for novel solutions
to some of the most challenging computational problems.
The broader implications of this research extend to fields
such as finance, logistics, and data science, where SPIMs
could significantly enhance performance and efficiency,
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leading to substantial advancements.
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