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We present a novel light-matter platform that uses complex-valued oscillator networks, a form of
physical neural networks, to identify dominant subnetworks and uncover indirect correlations within
larger networks. This approach offers significant advantages, including low energy consumption, high
processing speed, and the immediate identification of co- and counter-regulated nodes without post-
processing. The effectiveness of this approach is demonstrated through its application to biological
networks, and we also propose its applicability to a wide range of other network types.

Recent advancements have led to developing special-
ized computing architectures designed to tackle optimiza-
tion challenges and enhance machine learning processes.
These architectures acting as physical neural networks
(PNNs) exploit various physical principles to efficiently
guide systems toward equilibrium states. Fundamental
principles include thermal annealing and its derivatives,
quantum annealing, Hopf bifurcation at the condensa-
tion threshold, minimum power dissipation, the princi-
ple of least action, and minimum entropy generation [1].
These principles form the foundation of efficient physics-
inspired computing heuristics, known as π-computing.
These heuristics are then translated into conventional
computational algorithms, enabling more effective and
efficient problem-solving capabilities.

Coupled light-matter complex-valued neural networks,
a type of PNNs, present an innovative approach to
computing, distinct from traditional gate-based methods
and annealing techniques, both quantum and classical.
Among these, exciton-polariton condensates are particu-
larly noteworthy as they epitomize the coupling of light
and matter. They give rise to Gain-Based Computing
(GBC), which relies on the interplay of light and matter,
employing advanced laser technologies and spatial light
modulators (SLMs) to facilitate parallel processing across
numerous channels, assisted by the nonlinearities intrin-
sic to the matter component, and achieving exceptional
energy efficiency.

At the heart of GBC is a unique operational sequence
where an increase in gain power is coupled with sym-
metry breaking and gradient descent mechanisms. This
process involves waves’ inherent coherence and synchro-
nization, naturally guiding the system towards a state of
minimized losses. In this context, fully exploiting light’s
degrees of freedom — amplitudes and phases — poten-
tially should enable richer computational capabilities in
photonic or polaritonic complex-valued neural networks,
enhancing their ability to process and interpret complex
data patterns efficiently.

Recent advancements in GBC-inspired hardware have
introduced a variety of technologies. These include coher-
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ent Ising machines (CIMs) based on optical parametric
oscillators (OPOs) [2–5], advanced laser systems [6–8],
photonic simulators [9, 10], polariton [11, 12] and photon
condensates [13]. The primary focus of these approaches
is to solve optimisation problems on a set of either dis-
crete or continuous variables that can be mapped onto
the phases of generally complex signal amplitudes so that
the goal is limited to finding the ground state of vari-
ous classical spin Hamiltonians such as Ising, XY, Clock,
k-local, etc. [14]. However, supporting only the prob-
lems that can be mapped into a standard spin Hamil-
tonian restricts the scope of applications that can be
efficiently embedded in the physical hardware or algo-
rithms. Notably, there have been several proposals to
extend the class of Ising Hamiltonians to mixed-integer
or box-constrained quadratic optimisation problems [15–
17].
In our Letter, we show that the amplitudes and phases

of complex-valued oscillators can be exploited to solve the
problem of identifying a dominant subnetwork—a prob-
lem central to network analysis. By engaging all degrees
of freedom, our method enables a more direct represen-
tation and processing of data.
Identifying subnetworks of closely interacting nodes

can provide valuable insight into the structure and func-
tion of complex systems. For example, in social networks,
identifying sub-communities can help understand how in-
formation spreads within the network and how different
groups interact. In financial networks, identifying clus-
ters of companies or markets can help understand how
different sectors of the economy are interconnected and
how they influence each other. In transportation net-
works, identifying clusters of locations can help optimise
transportation routes and improve efficiency. Identifying
groups of devices or users in communication networks can
help improve network performance and reliability. The
analysis of subnetworks within complex bio-molecular
networks offers valuable insights into the intricate pat-
terns of cellular interactions, particularly in the context
of temporal and condition-specific conditions. Extracting
condition-specific subnetworks is crucial in understand-
ing cellular adaptations to environmental changes and
gene expression alterations associated with diseases and
ageing. Bio-molecular networks were constructed by in-
tegrating multiple microarray data sets, considering the
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interplay between genes and their expressions and com-
bining these with other data sets such as protein-protein
or protein-DNA interaction into a single coupling matrix
J, with components Jij that characterize the strength
and kind (positive or negative) of the correlations be-
tween i−th and j−th genes.

There are different ways to define the dominant sub-
network given the coupling matrix J. One common ap-
proach is to find the principle eigenvector of J that gives
the steady-state distribution of a Markov chain in a ran-
dom walk model where transition probabilities are pro-
portional to the weights of the edges. Hence, nodes with
high values in the dominant eigenvector are those with
strong connections to other influential nodes. However,
this does not lead to the true dominant subnetwork that
is usually defined as a clique (a portion of the graph
where every node is connected to every other node within
that same subset, forming a complete subgraph) with the
highest total edge weight among all cliques in the graph
[18]. Such a problem is known as a Maximum Weighted
Clique Problem (MWCP) and is nondeterministic poly-
nomial (NP)-hard. There are no efficient algorithms for
solving MWCP on large-scale networks, so traditional al-
gorithms must be revised due to their substantial space
and time complexity [19]. For instance, conventional ap-
proaches frequently rely on an adjacency matrix to ex-
pedite operations like verifying adjacency between two
vertices untenable for large-scale graphs. Similarly, the
prevailing algorithms typically do not exhibit the low
time complexity necessary for efficiently processing large-
scale graphs. This deficiency hampers their applicability
in scenarios where rapid analysis of large graphs is cru-
cial. In this light, it is essential to allow physical systems
to navigate the complexities of massive graphs with en-
hanced efficiency and lower computational demands.

MWCP can be formulated as a continuous optimiza-
tion problem [18] using the exact Motzkin-Straus map-
ping between maximum clique optimizations problem
and continuous quadratic optimisation [20]. The formu-
lation of this problem can be stated as follows:

max
xi≥0
∑
i

∑
j<i
∣Jij ∣xixj , subject to ∑

i

xi = 1, (1)

where i = 1, ...,N , N is the network size, xi ∈ R is the
node’s importance in the network, and the condition
∑i xi = 1 maximises the interconnectivity of subnetwork.
Note that if the graph is unweighted ( ∣Jij ∣ = 1), the opti-
mizers become xi = 1/η if the i−th node belongs to MWC
of size η and xi = 0 otherwise [20].

Now, we formulate the ”Optical DOMInant subNet-
work detection” platform ”DOMINO” and demonstrate
its application to real biological gene-gene coexpression
networks. In Eq. (1), we take the modulus of the cou-
pling strengths Jij as it corresponds to the strength of
the interactions (positive or negative). After identifying
the dominant subnetwork, we show that the same optical
platform can detect indirect correlations in networks and
quantify the strength and direction of these correlations

between nodes.
Optical DOMInant subNetwork detection - DOMINO.

To construct the optical GBC platform that solves
MWCP of Eq. (1), we consider the network of coupled
condensates or lasers, a practical realization of PNNs,
with the state of the i−th condensate described by the
wavefunction ψi(t) = ∣ψi∣ exp[iθi] with phase θi relative
to a reference condensate in a fast reservoir regime as

dψi

dt
= γi(t, ∣ψi∣

2
)ψi +

N

∑
j=1

Jijψj . (2)

This equation can be obtained as a tight binding approx-
imation of the Ginzburg-Landau model [21] with the ef-
fective gain (injection minus linear and nonlinear losses)
given by γi(t, ∣ψi∣

2) and the interactions between con-
densates by J. The effective gain typically involves some
form of a saturable nonlinearity, the simplest of which is

γi = γ
(i)
inj − γloss − ∣ψi∣

2, with γ
(i)
inj > 0 and γloss > 0 being

the injection rate and linear losses, respectively. Vari-
ous types of feedback can be envisioned, in particular,
the injection rate that itself depends on the condensate
density

dγ
(i)
inj

dt
= ϵ(1 − ∣ψi∣

2
), (3)

which for some positive parameter ϵ brings all conden-
sate densities to the same value (∣ψi∣

2 = 1). With such
feedback, the steady-state of Eq. (2) was shown to min-

imize the loss function F0 =
1
2 ∑

N
i=1(γ

(i)
inj − γloss − ∣ψi∣

2)2 −
1
2 ∑i,j Jij (ψiψ

∗
j + c.c.) and, therefore, the XY Hamilto-

nian HXY = −
1
2 ∑i,j Jij cos(θi − θj) [22].

To solve MWCP Eq. (1) we propose to associate xi
with the amplitudes of ψi, assume that all condensates
are phase-locked to the phase Φ of the reference conden-
sate (so θi → θi−Φ) and consider the optical loss function

Floss =
1

2
∑
i

⎛

⎝
ξ − ∣∑

j

ψj ∣
2⎞

⎠

2

−
1

2
∑
i,j

∣Jij ∣ (ψiψ
∗
j + c.c.) , (4)

where we modified F0 by replacing the local ∣ψi∣
2 term

in the effective gain with the total light intensity S =
∣∑j ψj ∣

2. The first term in Eq. (4) becomes a penalty to
violate the constraint ∑i xi = 1, dictated by Eq. (1).
Applying the Madelung transformation ψi =
√
ρi exp (iθi) in Eq. (4) and letting θi ≡ Φ for all i

gives Floss = − ∑
i<j
∣Jij ∣
√
ρiρj +

1
2
(ξ − ∣∑

j

√
ρj ∣

2)

2

. The

global minimum of this loss function leads to the
solution of Eq. (1) with amplitudes xi mapped onto
√
ρi. Therefore, this functional can effectively encode

MWCP. The system evolution to the minimum of Floss

follows ψ̇i = −∂Floss/∂ψ
∗
i , so that

ψ̇i = (ξ − ∣∑
j

ψj ∣
2
)ψi +∑

i≠j
Qijψj . (5)



3

This equation describes the dynamics of the optical sys-
tem of the network of coupled condensates with coupling
strengths Qij = ∣Jij ∣ − ∣∑k ψk ∣

2 + ξ.
In experiments, the losses proportional to the to-

tal light intensity S = ∣∑j ψj ∣
2 can be achieved either

through the absorption of the excited states of the con-
densates by the intracavity layer, resulting in correct en-
ergy blueshift [23] or by measuring S and adjusting the
laser intensity using a feedback scheme on the effective
gain γi(t). Experimentally, the injected light must stay
coherent with the reference condensate to satisfy the con-
dition ∑i ψi = e

iΦ
∑i
√
ρi. This can be achieved by apply-

ing an external coherent optical field [24] or implement-
ing a feedback control system that monitors the phase of
each condensate [25]. Mathematically, we represent such
coherence by adjusting the phases of ψi(t) in Eq. (5)
at each evolution step by the following feedback scheme
(DOMINO)

ψnew
i =

RRRRRRRRRRR
ψold

i +∆t
⎛
⎝
(ξ − ∣∑

j

ψold
j ∣2)ψold

i +∑
i<j
Qijψ

old
j

⎞
⎠

RRRRRRRRRRR
, (6)

where ψold
j and ψnew

j are separated by feedback time
∆t. The gain-based schedule arising in Eq. (6) modi-
fies the basins of attraction and allows the trajectories
to depart from the direction of the primary eigenvec-
tor and directs the trajectory to the true global mini-
mum as illustrated in Fig. 1. Fig. 1(a) shows the time
evolution of amplitudes ∣ψi∣ governed by Eq. (6). The
insets in Fig. 1 demonstrate snapshots of the coupled
condensate system at various times. Figure 1(b) shows
histograms of solutions found by computer simulations of
DOMINO (Eq. (6)) and its comparison with the ’BFGS’
algorithm implemented via built-in ’scipy. optimise’ li-
brary, as well as with solutions provided by the lead-
ing eigenvectors of the weights matrix ∣Jij ∣ specified in
Supp. Mat. A. One of the most critical advantages of
DOMINO is the efficiency in navigating the basins of
attraction towards the global minimum. This can be
illustrated by comparing the number of different ran-
dom initial conditions required to find the optimal so-
lution using DOMINO and ’BFGS’ method with the ob-
jective function minxi[−∑ij ∣Jij ∣xixj + 10(1 − ∑i ∣xi∣)

2].
DOMINO significantly exceeds the success probability of
the ’BFGS’ method, as shown in Fig. 1(c). Figure 2
shows the accumulated probability of success depending
on the execution time for DOMINO and a state-of-the-
art quadratic programming solver Gurobi [26] applied to
the original formulation of Eq. (1). It can be seen that
DOMINO finds a solution with better confidence faster
than Gurobi for structured complex networks with a den-
sity p > 0.05. Supp. Mat. B illustrates the same behavior
for randomly structured networks.

Any actual experimental realization of the physical
solver will unavoidably operate with noisy data, primar-
ily affecting coupling strengths Jij . The ability to be
robust to imperfections and the understanding of what
level of errors leaves the solution stable plays an essen-
tial role in developing components of the actual physical
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Figure 1. (a) Time evolution of amplitudes governed by
Eq. (6) (with parameters ξ = 5 and dt = 0.0005) for the net-
work shown in the most left inset with ∣Jij ∣ = 1 if there is
an edge connecting i−th and j−th nodes and zero otherwise.
The insets show snapshots of the system of coupled conden-
sates at various moments in time. Only the nodes in the
maximum clique have nonzero amplitudes at the end of the
simulation, as shown in the most right inset. (b): histograms
of the solutions found by the trajectories of DOMINO Eq. (6)
(green) with parameters ξ = 5, dt = 2 ⋅ 10−4 and using ’BFGS’
algorithm (blue). The red bars correspond to the solutions
distribution provided by the leading eigenvectors of matrix
J. The histograms were calculated based on 100 connected
random graphs of size N = 100 with different weights matri-
ces Jij generated for each of 100 different initial conditions
for each graph. The leftmost bars correspond to the global
minima, verified for each graph using the Gurobi solver. A
detailed description of J’s structure for each graph of density
p is given in Supp. Mat A. (c): Number of different random
initial conditions required to find the optimal solution using
numerical integration of Eq. (6) calculated for 100 different
connected random networks of size N = 100 with varying net-
work densities p. Green bars correspond to solutions found by
the DOMINO, and blue bars demonstrate convergence rates
of the ’BFSG’ algorithm. The values marked by ∞ show the
fraction of networks G for which the ground state was not
found for any of the 100 different initial conditions used.

solver. In Supp. Mat. C we show how the DOMINO
solver resists noise and inaccuracies in natural physical
systems. Simulations have demonstrated that even in
conditions of noise reaching 5%, the errors remain within
3%. In Supp. Mat. D we estimate the energy and time
efficiency of the DOMINO solver when implemented in
optical hardware.
Gene-gene coexpression network. We applied our

method to real-life biological data, specifically a gene-
gene coexpression network [27]. This coexpression net-
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Figure 2. Comparison of the accumulated probability of suc-
cess as a function of TTS for Gurobi (dashed lines) and
DOMINO solver (Eq. (6) with ξ = 5 and dt = 2 ⋅ 10−4) (solid
lines) for the networks of size N = 100. Both solvers are exe-
cuted on the same single CPU core. DOMINO computation
time was estimated as the time required to sequentially exe-
cute solver 100 times starting with different initial conditions.
The upper axis shows the corresponding total number of steps
of numerical integration of Eq. (6). The probability of success
at each time step for both solvers was estimated as the frac-
tion of 90 different matrices J for which a global minimum
was found. A detailed description of J’s structure for each
graph of density p is given in Supp. Mat A.

work was established using the 3DCoop pipeline, which
analyzed the occupancy profiles of 386 Transcription
Regulators (TRs) in the K562 human myelogenous
leukaemia cell line [28]. The 3DCoop pipeline leveraged
peak information obtained from ChIP-seq experiments,
indicating the precise locations where the protein of in-
terest binds to the DNA within the cell. Utilising the
information about how frequently these TRs bind to spe-
cific DNA locations within the cell as well as the spatial
interactions between different genomic regions from Hi-C
data, 3DCoop constructs TR-specific contact maps based
on which the TR pair-wise correlation matrix Wij of size
N×N = 386×386 that was generated using the generalized
Jaccard similarity. MWCP solution can give important
information about what TR clusters are involved in spe-
cific functions within the cell, including leukaemia or im-
mune system-related functions (pathways). The KEGG
[29] pathways analysis can be used to interpret the cellu-
lar functions of identified TR cooperation in K562 cells
(see Table S11 from [27]).

DOMINO was applied to identify the maximum
weighted clique (MWC) based on the mean Jaccard in-
dex within the 3DCoop-generated gene-gene interaction
network. Starting with 100 different random initial con-
ditions, our solver successfully found MWC with 20%
success probability. At the same time, BFGS had only
3% success probability of solving Eq. (1) on the same
set of initial conditions. The found maximum weighted
clique (CBX3-CTCF-JUND-MAZ-RAD21-RESTSMC3-
ZNF143) is depicted in Fig. 3 along with the most en-
riched pathways associated with it, which agrees with the
findings of [27] (see Table S4 and Fig. 2B). The KEGG
pathway analysis of detected MWC encompasses multiple
pathways related to hematopoietic cancers. This finding

implies that this collaboration of TRs may play a role
in cell type-specific gene regulation within leukaemia by
influencing the 3D chromatin organization [30].

0 2 4 6 8 10 12 14
log10 (Adjusted p-value)

Leukocyte transendothelial migration
Natural killer cell mediated cytotoxicity

Glioma
Focal adhesion

Chemokine signaling pathway
T cell receptor signaling pathway
Regulation of actin cytoskeleton

Non-small cell lung cancer
Fc epsilon RI signaling pathway

Endocytosis
VEGF signaling pathway

Tight junction
Acute myeloid leukemia

CBX3

CTCF

JUND

MAZ

RAD21

REST

SMC3

ZNF143

Figure 3. Thirteen most important KEGG path-
ways for ((CBX3-CTCF-JUND-MAZ-RAD21-RESTSMC3-
ZNF143)) cluster identified as an MWC in the network of
386 Transcriptional Regulators detected in K562 human myel-
ogenous leukemia cell line using 3DCoop pipeline. Inset il-
lustrates the most important Maximum Clique subnetwork
found in the genes coexpression network of size N = 386
from [27]. Green nodes correspond to TRs highlighted by our
solver. Calculations were performed with parameters: ξ = 5,
T = 20, and dt = 2 ⋅ 10−4

Identifying and ranking all cliques within a network
based on their weights involves repeatedly applying
MWC detection using DOMINO. After detecting an
MWC, its vertices are iteratively deleted to form a new
subnetwork, allowing the search for a new MWC to con-
tinue. This process is repeated for each clique found in
the previous steps. To avoid redundant detections of the
same clique, we keep track of the cliques already discov-
ered and rank them according to their weights.
Indirect correlations. DOMINO uses the condensate

amplitudes to identify the most connected subsets in
the network. In complex networks, direct connections
may not exist between two nodes, but they can still
exhibit correlations through other intermediary nodes
and edges. These indirect correlations (indirect inter-
actions) arise from various mechanisms like shared in-
puts/outputs, common regulatory factors, or feedback
loops. Understanding and detecting these indirect cor-
relations offer valuable insights into the network’s struc-
ture and functionality. Once MWC is identified within
a network, the phases of the oscillators in a complex-
valued oscillatory network can be utilized to uncover both
direct and inverse correlations among the network ele-
ments. To accomplish this, one can apply the original
optical system, as outlined in Eq. (2), which incorporates
saturable nonlinearity, alongside the feedback mechanism
described in Eq. (3), designed to minimize the XY Hamil-
tonian. In this context, the coupling strengths between
oscillators can be either positive or negative. The extent
of indirect correlations between nodes is inferred from the
magnitude of their phase differences as depicted in Fig. 4:
a more significant phase disparity implies a stronger neg-
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phase

Figure 4. The indirect positive and negative correlations ob-
tained by minimizing the XY Hamiltonian using the temporal

evolution of Eq. (2) with Eq. (3) and ϵ = 0.1, γ
(i)
inj (0) = −10.

Solid edges between pairs of vertices i and j of the shown
network represent ferromagnetic couplings Jij = +1, and
the dashed edges correspond to anti-ferromagnetic couplings
Jij = −1. Pairs of vertices not connected by edges have zero
couplings Jij = 0. Colors indicate the phases of ψi and reveal
indirect correlations between the nodes.

ative correlation. This method provides a systematic ap-
proach to evaluate the correlation strengths within the
network.

Conclusion. We have developed the optical platform

DOMINO, a form of PNNs, for detecting maximum-
weighted subnetworks within extensive networks and the
indirect correlation between the nodes. This approach
demonstrates several key potential advantages when im-
plemented in optical hardware, including low energy
consumption, rapid operational speed, high convergence
rates towards optimal solutions, and noise resilience, an
inevitable factor in real-world physical systems. Our re-
sults indicate that DOMINO outperforms contemporary
optimization tools like Gurobi regarding speed and con-
fidence in finding optimal solutions. The effectiveness of
DOMINO on real complex networks and its ability to re-
veal indirect correlations highlights the promising poten-
tial of this platform in social studies, finance, medicine,
logistics, etc.
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I. SUPPLEMENTAL MATERIALS

A. Generation of coupling strengths

To generate coupling strengths Jij corresponding to
random networks of size N and network density p we
first chose random partitions {ni}N of integer number
N s.t. N = ∑i ni with 3 ≤ ni ≤ 6 and create ∣{ni}N ∣
cliques of respective sizes ni containing Ei = ni(ni − 1)/2
connections respectively. Then we generate S = pN(N −
1)/2−∑iEi random connections between nodes belonging
to different cliques and assign random weights Jij ∈ (0,1]
to each connection (i, j) of the resulting network. The
resulting graph will represent a connected network of size
N and density p containing randomly generated cliques
of different sizes ni.

B. DOMINO properties on random networks

In this section, we demonstrate the performance of
the DOMINO solver and its comparison with the Gurobi
solver for random networks with coupling strengths Jij
being randomly generated from a uniform distribution by
Jij = ηi<j(p) + ηTi<j(p), where ηi<j(p) is a random upper

triangular matrix with entries ηi<j ∈ [−1,0) ∪ (0,1] gen-
erated uniformly with probability p < 1 and ηi<j = 0 with
probability 1 − p. Thus, matrix J describes the connec-
tivity of a weighted undirected network in which vertices
i and j are connected by an edge of weight ηi<j with
probability p. We refer to parameter p as the network
density. We selected only matrices corresponding to con-
nected networks when generating J. Fig. 5 illustrates the
accumulated probability of success as a function of the
execution time for the DOMINO and Gurobi solvers.

Fig. 6(a) depicts histograms obtained from computer

0 200 400 600 800 1000
time, sec

0.0

0.5

1.0

pr
ob

ab
ilit

y p=0.04
p=0.08
p=0.12
p=0.16

500 5000 10000 15000 20000 25000
steps of integration : 103

Figure 5. Comparison of the accumulated probability of suc-
cess as a function of TTS (Time to Solution) for Gurobi (dot-
ted lines) and the DOMINO solver (solid lines) governed by
Eq. (6) of the main text with ξ = 5 and dt = 0.0002. Both
solvers were executed on the same single CPU core. DOMINO
computation time was estimated as the time required to se-
quentially execute solver 100 times, each starting with differ-
ent initial conditions. The upper axis shows the corresponding
total number of steps of numerical integration. The probabil-
ity of success at each time step for both solvers was estimated
as the fraction of 90 different matrices J for which the global
minimum was found.

simulations of DOMINO solver (Eq. (6) of the main text)
and compares them with those found by ’BFGS’ algo-
rithm implemented via the built-in ’scipy. optimize’ li-
brary, as well as with solutions derived from the leading
eigenvectors of the weights matrix J specified in this sec-
tion. Figure 7 demonstrates the growth in characteristic
time required by the DOMINO solver to achieve a steady
state with the network size N growth.

C. Noisy data

In this section, we demonstrate the system’s robust-
ness to noise and imperfections of the implemented cou-
plings that unavoidably occur in the real setup due to
the imperfection of pumping and overlapping conden-
sates. We simulate the fluctuations of the couplings
Jij from required values implementing noise of level σ
and solve numerically Eq. (6) of the main text with the

coupling strengths Jnoisy
ij (G) = Jij(G) + σζij(t), where

ζij(t) ∈ (0,1] represents time-varying random noise of
level σ. To assess the system’s resistance to internal
noise, we compare Hloss = −

1
2 ∑i,j ∣Jij ∣ (ψiψ

∗
j + c.c.) with

Hnoisy
loss = −

1
2 ∑i,j ∣J

noisy
ij ∣ (ψiψ

∗
j + c.c.) for different steady

states ψi and different noise levels σ. Figure 8 shows that
DOMINO remains noise resistant up to σ ∼ 1/2.

D. Efficiency estimates

To estimate the physical time and power required
by the real optical system to solve optimization prob-
lem Eq. (1) of the main text, we consider the complex
Ginzburg-Landau equation in dimensional form, which
accurately describes the dynamics of exciton-polariton

https://eprints.soton.ac.uk/438419/
http://dx.doi.org/10.1038/s42005-019-0271-0
https://www.gurobi.com
http://dx.doi.org/ https://doi.org/10.1016/j.isci.2021.103468
http://dx.doi.org/ https://doi.org/10.1016/j.isci.2021.103468
http://dx.doi.org/ https://doi.org/10.1002/ijc.2910180405
http://dx.doi.org/ https://doi.org/10.1002/ijc.2910180405
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
http://dx.doi.org/10.1128/AEM.02040-09
http://dx.doi.org/10.1103/PhysRevApplied.21.014028
http://dx.doi.org/10.1103/PhysRevApplied.21.014028
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Figure 6. (a) Histograms of the solutions found by DOMINO
Eq. (6) of the main text (green) and using ’BFGS’ algorithm
(blue). The histograms were calculated based on 100 ran-
dom networks of size N = 100 with different weight matrices
J generated as described in this section, using 100 different
initial conditions for each matrix J. The red bars represent
the solutions defined by the leading eigenvectors of J. The
leftmost bars correspond to the global minima, verified for
each graph using the Gurobi solver. (b) Number of different
random initial conditions required to find the optimal solu-
tion using numerical integration of Eq. (6) calculated for 100
different connected random networks of size N = 100 for dif-
ferent network densities p. Green bars correspond to solutions
found by the DOMINO solver described in Eq. (6) of the main
text, and blue bars demonstrate the convergence rates of the
’BFGS’ algorithm. The values corresponding to ∞ indicate
the fraction of networks for which the ground state was not
found for any of the 100 different initial conditions used.
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Figure 7. Average dependence of time required to find steady
state by Eq. (6) of the main text with ξ = 5 and dt = 1 ⋅ 10−4
on the size of the system. ⟨TTS⟩ was estimated as the aver-
age TTS of 10 executions of the solver with different random
initial conditions per each of 90 different matrices J of sizes
N and corresponding network densities p. A detailed descrip-
tion of J’s structure for each graph of given density p is given
in Supp. Mat A.

condensates

ih̵
∂Ψ̃

∂t̃
= −

h̵2

2m
∇̃

2Ψ̃ +U0∣Ψ̃∣
2Ψ̃ +

ih̵

2
(Pinj − γc) Ψ̃, (7)

where Pinj = RRP /(γR+RR∣Ψ̃∣
2) is gain, RR is relaxation

rate of excited particles from reservoir, U0 is strength of
delta-functional polariton-polariton interactions, γR - lin-
ear losses of excited particles. The dimensionless Eq. (2)
of the main text can be obtained by transformations:

Ψ̃ →
√
h̵2/2mU0l2Ψ, r̃ → lr, t̃ → 2mtl2/h̵ with subse-

quent tight-binding approximation. Now we can esti-
mate Treal = 2mTl

2/h̵ as real optimization time required
by purely optical setup, where m ≈ 10−4 ÷ 10−5 me is the
polariton mass, me is the electron mass and l = 1 µm
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Figure 8. Robustness of DOMINO to noise. Equation 6 of
the main text was solved numerically and averaged over 500
different connected networks G of size N = 30 as described in
Supp. Mat. A. for network density p with 100 different initial
conditions per each network and weights matrices J(G) per-
turbed by random time-varying uniform noise σζij(t) of level
σ as Jnoisy

ij (G) = Jij(G) + σζij(t). Here ζij(t) = 0 if vertices i

and j are not connected in G and ζij ∈ (0,1] otherwise. The
error represents the deviation of the loss function Hloss of the
solution of a noisy system from a system without noise. It was
calculated as: Error = (Hnoisy

loss −Hloss)/(Hnoisy
loss +Hloss), where

Hnoisy
loss is the loss function of the solution calculated with the

noise introduced to Jij(G). The inset shows the correspond-
ing errors depending on the network density for fixed noise
level σ = 10−1.

is the characteristic unit length. For dimensionless time
T = 100 per one run for one initial condition, we find
Treal ≈ 270 ps ÷ 2.7 ns. We must emphasise that time
T and Treal that one single run on purely optical solver
takes also grows with the size of the problem N as shown
in Fig. 7. However, it scales much slower in contrast to
conventional von Neuman architectures because optical
systems do not waste additional time performing arith-
metic operations, the number of which grows in propor-
tion to the number of edges ∼ O(N2) with the growth of
the network size N .

The real energy cost Ereal of the real purely optical
solver that executes DOMINO scales linearly with N and
does not depend on the number of edges because inter-
actions occur via overlapping of the condensates, each
created by the laser beam. Therefore Ereal can be esti-
mated as Ereal ∼ const⋅h̵

2γinjN/(2ml
2) ∼ O(N). Exciton-

polariton systems, a prime example of coupled light-
matter condensates, are particularly energy-efficient be-
cause they require energy only to create and maintain
N overlapping condensates. In contrast, electronic and
optoelectronic solvers consume energy for every edge:
Eelectronic ≈ Eel ⋅p⋅N(N−1)/2 ∼ O(N

2). Where Eel = 1 pJ
is the unit energy per operation consumed by the elec-
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tronic system [31], and p is a network density.
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