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We introduce the Vector Ising Spin Annealer (VISA), a framework in gain-based computing that
harnesses light-matter interactions to solve complex optimization problems encoded in spin Hamil-
tonians. Traditional driven-dissipative systems often select excited states due to limitations in spin
movement. VISA transcends these constraints by enabling spins to operate in a three-dimensional
space, offering a robust solution to minimize Ising Hamiltonians effectively. Our comparative analy-
sis reveals VISA’s superior performance over conventional single-dimension spin optimizers, demon-
strating its ability to bridge substantial energy barriers in complex landscapes. Through detailed
studies on cyclic and random graphs, we show VISA’s proficiency in dynamically evolving the en-
ergy landscape with time-dependent gain and penalty annealing, illustrating its potential to redefine
optimization in physical systems.

INTRODUCTION

In pursuing advancements in digital computing, mainly
aimed at addressing the complexities inherent in AI and
large-scale optimization problems, the inherent limita-
tions of the traditional von Neumann architecture come
to the forefront. These limitations are characterized by
the escalating costs required for incremental performance
improvements, prompting a pivotal shift toward more
sustainable computational paradigms [1]. In this evolv-
ing landscape, two primary paths have emerged: refin-
ing algorithms within the existing computational frame-
works and exploring novel hardware paradigms grounded
in physics principles, with a notable focus on exploiting
light-matter interactions.

Algorithmic enhancements, while valuable, offer incre-
mental improvements. In contrast, the exploration of
alternative hardware paradigms holds the promise of a
substantial shift, leveraging the fundamental principles
of physics—such as minimizing entropy, energy, and dis-
sipation [2]—and integrating quantum phenomena like
superposition and entanglement [3]. This innovative ap-
proach aims to transcend the conventional computing
model’s limitations, tapping into the intrinsic compu-
tational potential of physical systems to address com-
plex optimization challenges currently beyond traditional
methods’ reach.

Central to this innovative trajectory is the integra-
tion of analogue, physics-based algorithms and hardware,
which involve translating complex optimization prob-
lems into universal spin Hamiltonians, like the classical
Ising and XY models [4–6]. This translation process in-
volves embedding the structure of the problem into the
spin Hamiltonian’s coupling strengths and targeting the
ground state as the solution, with the physical system
tasked with discovering this state. The efficiency and ac-
curacy of this mapping process are vital, as they ensure
the scalability of computational efforts, enabling these
problems to remain manageable despite increasing com-

plexity [7].
Gain-based computing (GBC) using coupled light-

matter emerges as a novel disruptive computing plat-
form distinct from gate-based and quantum or classical
annealing approaches. GBC combines optical light ma-
nipulations with advancements in laser technology and
spatial light modulators, facilitating parallel processing
across multiple channels with significant nonlinearities
and high-energy efficiency. The operational principle of
GBC—increasing pumping power (annealing), followed
by symmetry breaking and gradient descent—relies on
wave coherence and synchronization to lead the system
to a state that minimizes losses naturally. Recent devel-
opments in physics-based hardware exploiting GBC prin-
ciples have showcased diverse technologies. These range
from optical parametric oscillator based coherent Ising
machines (CIMs) [8–11], memristors [12], and laser sys-
tems [13–15], to photonic simulators [16, 17], polaritons
[5, 6], photon condensates [18], and novel computational
architectures like Microsoft’s analogue iterative machine
[19] and Toshiba’s simulated bifurcation machine [20].
These platforms have been instrumental in minimizing
programmable spin Hamiltonians, demonstrating efficacy
across a spectrum of complex optimization challenges,
including machine learning [21], financial analytics [22],
and biophysical modelling [23, 24].
The Ising Hamiltonian, originating from statistical

physics, is a natural model that can be implemented in
these platforms. It describes interactions between spins
in a lattice, providing a fundamental model for under-
standing complex systems and can be written as

HI = −∑
ij

Jijsisj −∑
i

hisi, (1)

where si = ±1 represents the spin, and hi is the external
magnetic field. Jij is the interaction strength between
the i-th and j-th spins, and is encoded in the coupling
matrix J. The Ising model’s exploration of ground states
in physical systems parallels the search for minimum cost
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functions in optimization. At the same time, its energy
landscapes mirror the loss landscapes in machine learn-
ing, offering a unique perspective on optimization prob-
lems.

At the core of the hardware representation of Ising
Hamiltonians lies the utilization of scalar soft-spins
within soft-spin Ising models, which effectively change
energy barriers inherent in classical hard-spin Ising
Hamiltonians, HI. The transition from the hard-spin
Ising Hamiltonians HI to the soft-spin Ising models con-
sists of considering binary spins si as signs of continuous
variables xi - amplitudes - that bifurcate from vacuum
state x = 0 guided by the gain increase. While facilitat-
ing enhanced problem-solving capabilities, this approach
occasionally encounters the obstacle of trajectory trap-
ping within local minima due to the escalating energy
barriers as gain increases.

Therefore, the challenge of navigating energy land-
scapes with numerous local minima, especially during
amplitude bifurcation, necessitates an innovative ap-
proach to avoid the system being trapped in local min-
ima. In this paper, we introduce the Vector Ising Spin
Annealer (VISA), a model that integrates the benefits
of multidimensional spin systems and soft-spin gain-
based evolution. Unlike traditional single-dimension
semi-classical spin models, VISA utilizes three soft modes
to represent vector components of an Ising spin, allowing
for movement in three dimensions and offering a robust
framework for accurately determining ground states in
complex optimization problems. Our comparative stud-
ies underscore the enhanced performance of VISA com-
pared to established models with scalar spins, such as
Hopfield-Tank networks, coherent Ising machines, and
the spin-vector Langevin model (SVL). VISA showcases
a notable ability to overcome significant energy barriers
and effectively navigate through intricate energy land-
scapes. We illustrate VISA’s effectiveness by tackling
Ising Hamiltonian problems across various graph struc-
tures. Our examples include analytically solvable 3-
regular circulant graphs, more complex circulant graphs,
and random graphs where minimizing the Ising Hamil-
tonian is known to be an NP-hard problem. In our dis-
cussions, when we refer to “solving a graph A” or “min-
imizing a graph A”, we use shorthand for the more de-
tailed process of “finding the global minimum of the Ising
Hamiltonian on graph A”. This terminology simplifies
our reference to determining the lowest possible energy
state for the Ising model applied to a specific graph struc-
ture.

VECTOR ISING SPIN ANNEALER

The VISA model is a semi-classical, three-dimensional
soft-spin Ising model. It employs annealing of the loss
landscape, symmetry-breaking, bifurcation, gradient de-

scent, and mode selection to drive the system toward
the global minimum of the Ising Hamiltonian. Here, we
represent Ising soft-spins as continuous vectors in three-
dimensional space xi = (x1i, x2i, x3i) that are free to move
in that space. VISA may be physically realized using
amplitudes of a network of coupled optical oscillators. In
these optical-based Ising machines, vectors of Ising spins
are represented by three soft-spin amplitudes. In total,
3N amplitudes are required to minimize an N -spin Ising
Hamiltonian. This approach is somewhat complimen-
tary to the recently proposed “dimensionality annealing”
where soft Ising amplitudes are considered as coordinates
of the multidimensional spins such as XY or Heisenberg
spins [25, 26]. While the main idea is to exploit the ad-
vantages of the higher dimensionality, VISA aims at the
Ising minimization rather than hyper-dimensional spin
systems [25, 26].
To formulate the Hamiltonian that is capable of rep-

resenting the dynamics of the GBC, we incorporate the
term that is convex and dominates when the effective
gain (loss) is large and negative, the Ising term that is
minimized when the gain is large and positive, and a
term that aligns the spins at the end of the process so
that their direction can be associated with the binary
spin si = ±1. We write, therefore, the VISA Hamiltonian
as the sum of three terms HVISA =H1 +H2 +H3, where

H1 = α

4

N∑
i=1(γi(t) − ∣xi∣2)2, (2)

H2 = −1
2

N∑
i,j=1Jijxi ⋅ xj , (3)

H3 = P (t)
2

N∑
i,j=1 ∣xi × xj ∣2, (4)

with hyperparameter α. As the effective gain γi(t) in-
creases with time t from negative (effective losses) to pos-
itive (effective gain) values, H1 anneals between a con-
vex function with the minimum at xi = 0 to nonzero
amplitudes. H2 coincides with the Ising Hamiltonian
when all xi have unit magnitude when projected along
the same direction. Finally, H3 is a penalty term with
time-dependent magnitude P (t) to enforce collinearity
between xi and xj at the end of the gain-induced land-
scape change. At which time, the condition on the am-
plitudes ∣xi∣ = 1 is imposed by the feedback on the gain
realised by γ̇i = ε(1− ∣xi∣2) [27]. Analogously to CIM op-
eration, as γi(t) grows from negative to positive values,
HVISA anneals from the dominant convex term H1 that
is minimized at xi = (0,0,0) for all i, to the minimum
of H2 +H3 with ∣xi∣ = 1 via symmetry-breaking bifurca-
tion. Concurrently, as P (t) increases from P (0) = 0 to
sufficiently large P (T ) > 0, the soft-spins vectors become
collinear. The Ising spins are calculated by projecting
the three-dimensional vectors along the axis k they have
centred around and taking signs of the resultant scalar
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si = sgn(xi ⋅ k). At t = T , the target hard-spin Ising
Hamiltonian HI is minimized.

The Hamiltonian HVISA is 4-local due to the H3 term.
Some optical hardware can directly encode such interac-
tions [28]. At the same time, it is possible to reduce the
4-local Hamiltonian to quadratic Hamiltonian by substi-
tuting the product of two variables with a new one while
adding the appropriate penalty terms. For instance, the
quartic interaction term xixjxkxm can be reduced to a
triplet by introducing a new variable y instead of xkxm

and the term qkm(y) = Q(xkxm − 2xky − 2xmy + 3y)
(known as Rosenberg polynomial [29]) in the Hamilto-
nian where Q > 0 is the penalty constant. Note that
qkm = 0 if and only if xkxm = y and is strictly positive
otherwise. The reduction of the triplet xixjy is done sim-
ilarly by replacing xixj with a new spin variable z and
introducing the penalty term qij(z) in the Hamiltonian
[30].

The governing equations ẋi = −∇iHVISA represent the
gradient descent combined with the temporal change of
annealing parameters γi(t) and P (t) as

ẋi = αxi(γi(t) − ∣xi∣2) + N∑
j=1Jijxj

t)(xi

N∑
j=1 ∣xj ∣2 − N∑

j=1xj(xi ⋅ xj)),
(5)

where in the last two terms, the vector triple product has
been invoked. The operation of VISA, therefore, relies on
the gradient descent of a gain-driven losses landscape.
We illustrate a toy model of VISA for two dimen-

sions in Fig. (1), demonstrating how the energy landscape
evolves as the gain γi(t) and penalty P (t) are evolved,
and how the minimizers x∗ and minima of HVISA change
during this process.

NUMERICAL EVOLUTION OF VECTOR ISING
SPIN ANNEALERS

We consider two popular models to introduce the con-
cept of a scalar-based GBC against which VISA will be
benchmarked. (A) Hopfield-Tank (HT) neural networks
[31, 32] have energy landscape given by the Lyapunov
function

EHT = −p(t) N∑
i=1∫

vi

0
g−1(x)dx − 1

2

N∑
i,j=1Jijvivj , (6)

with nonlinear activation function vi = g(xi) and real
soft-spin variables xi(t) describing the network state. At
any time t, the Ising state can be obtained from xi by
associating spins si with the sign of the soft-spin vari-
ables si = sgn(xi). The governing equation for HT neural
networks is ẋi = p(t)xi +∑j Jijvj with annealing param-
eter p(t). This first-order equation can be momentum-
enhanced and replaced with the second-order equation

Figure 1. Energy landscape of components of the two-
dimensional VISA Hamiltonian for N = 2 with spin-spin cou-
pling terms J11 = J22 = 0 and J12 = J21 = −1. The nor-
malized minimizer is x1 = (1,−1)/√2 and x2 = (−1,1)/√2,
and therefore in this illustration we choose state vectors
x1 = (x, y) while setting x2 = (−1,1)/√2. Snapshots of the
self-interacting term H1 through the annealing schedule are
shown in (a)-(c) for α = 4 and γi = γ = −0.5 (a), 0.5 (b), and 1
(c), illustrating the symmetry-breaking as the gain increases.
H1+H2 is shown in (d)-(f) which seeks to minimise interaction
energy between soft spins; in (f) the minimum is achieved as
the the angle between vectors x1 and x2 is π; in a more gen-
eral coupling matrix the vector spins will tend to adjust the
angles as to minimise the pairwise interactions. H1 +H2 +H3

is shown in (g)-(i) for the same gain parameter as in (a)-(c)
and P (t) = 1.0 (g), 1.5 (h), and 2.0 (i). The vector spins are
forced to be collinear with the direction that can be identified
with the hard Ising spins in (i).

leading to Microsoft analogue iterative machine [19] or
Toshiba bifurcation machine [33]. We will use these en-
hancements below. (B) CIM using the degenerate optical
parametric oscillators has an energy function

ECIM = 1

4

N∑
i=1(p(t) − x2

i )2 − α

2

N∑
i,j=1Jijxixj , (7)

where xi, p(t), and Jij represent degenerate optical
parametric oscillator quadrature, effective laser pumping
power, and coupling strength, respectively. The system
evolves as

ẋi = p(t)xi − x3
i + α∑

j

Jijxj , (8)

where α is a hyperparameter chosen to maximize solu-
tion quality. In the scalar-based GBC models, as the
gain p(t) increases from negative values (representing
effective losses) to large positive values (large effective
gain), the amplitudes undergo Hopf bifurcation and reach

xi = ±√p(T ) as t → T, p(t) = p(T ) = const for t > T . At
the fixed point, the second term in Eq. (6) dominates,
which is the target Ising Hamiltonian scaled by p(T ).
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The energy landscapes during amplitude bifurcation
have many local minima from the increased degrees of
freedom of the soft-mode systems. Moreover, the ground
state of the soft-mode system may correspond to the ex-
cited state of the hard-spin Ising model. At the bifur-
cation, the system trajectories may get trapped at these
minima and could not transition to the correct global
minimum at higher gains, especially when global cluster
spin flips are required [34]. By enhancing the dimension-
ality of the energy landscape, VISA may allow the system
to evolve from the global minimum of the soft-spin Ising
model to the global minimum of the classical hard-spin
Ising Hamiltonians, as we now illustrate.

J-Möbius Ladder Graph

First, we examine the Ising Hamiltonian minimization
on simple cyclic graphs. These graphs offer analytically
solvable benchmarks with distinct and identifiable obsta-
cles in finding ground states. The process of finding Ising
ground states on such graphs is significantly influenced by
the eigenvalues of the coupling matrix J, especially the
relationship between the eigenvectors’ component signs
and the Ising Hamiltonian’s global minimum [34]. For
instance, HT networks adjust spin amplitudes to favour
the principle eigenvector component signs [35].

We start by using a Möbius ladder-type graph, a cyclic
structure with an even number of vertices N arranged in
a ring, featuring variable couplings between adjacent and
opposite vertices. To explore non-trivial ground states,
we introduce equal antiferromagnetic couplings (Jij = −1)
among nearest neighbors and variable cross-ring antifer-
romagnetic couplings (Jij = −J). We refer to the Möbius
graphs with these couplings as J-Möbius graph. Follow-
ing Ref. [34], we define S0 as the alternating spin state
around the ring and S1 as the state with spins alternat-
ing except at two opposite ring points with frustrated
spins, as depicted in Fig. (5)(a) and (b). When N/2 is
even, the energies and principal eigenvalues of S0 and S1

intersect at Jcrit ≡ 4/N and Je ≡ 1 − cos(2π/N), respec-
tively. In the range Je < J < Jcrit, S0’s largest eigenval-
ues are smaller than those of S1, with an eigenvalue gap
∆ = 2 cos(2π/N) + 2J − 2, even though S0 represents the
ground state with lower energy. The dynamics of semi-
classical soft-spin models, including these considerations,
are juxtaposed with quantum annealing approaches in
the minimization of the Ising Hamiltonian on J-Möbius
ladder graphs, as detailed in Ref. [34].

The presence of amplitude heterogeneities enables the
soft-spin model to acquire and maintain its state achieved
at the bifurcation even when it diverges from the clas-
sical hard-spin Ising Hamiltonian ground state, poten-
tially complicating the optimization process when Je <
J < Jcrit. To mitigate this issue, the manifold reduc-
tion CIM (MR-CIM) technique was developed, incorpo-

rating an additional feedback mechanism to regulate soft
spin amplitudes, ensuring they remain close to their mean
value [34]. The amplitude adjustment after each update
at time step t is governed by

xi → (1 − δ)xi + δR(x)xi∣xi∣ , (9)

where 0 < δ < 1. This adjustment draws the spins nearer
to the mean, with the average defined by the squared
radius of the quadrature R(x) = ∑i x

2
i /N , thus aligning

the local and global minima of the soft and hard spin
models more closely. Comparative analyses between var-
ious CIM modes and quantum annealing have been con-
ducted, demonstrating that, despite quantum annealing’s
ability to utilize quantum entanglement and inter-spin
correlations to identify ground states, it exhibits height-
ened sensitivity to diminishing energy gaps near Jcrit.
Consequently, quantum annealing demands longer an-
nealing schedules to accurately determine ground state
solutions as J nears Jcrit [34].

Figure 2. Evolution of the VISA model in an N = 8 J-Möbius
ladder network with coupling strength J = 0.4, as governed by
Eq. (5). This figure illustrates the dynamics of VISA’s soft-
spin components: x1 = x1i (a), x2 = x2i (b), and x3 = x3i

(c), with vertical dashed lines indicating the snapshots at
times t1 and t2. Panels (d) and (e) depict the correspond-
ing spin vectors, highlighting the orientation at t1–influenced
by H1 + H2–and at t2, where spins align in a unified direc-
tion due to a high P (t2), revealing the hard-spin Ising Hamil-
tonian’s global minimum. The final orientation of the vec-
tors at t2 is spontaneous; thus, the vectors are adjusted such
that the z-axis aligns with this direction. Panel (f) shows
the trajectory of the VISA Hamiltonian, HVISA, over time
as it converges to the ground state. The numerical integra-
tion of Eq. (5) utilized the following parameters ε = 0.03,
γi(0) = −0.5, P (t) = t/200, α = 4, and initial conditions xij(0)
uniformly distributed within [−0.01,0.01]. The fourth-order
Runge-Kutta method with fixed time step ∆t = 0.1 was em-
ployed for solving Eq. (5).

Figure (2) illustrates the application of VISA to a
J-Möbius ladder graph instance characterized by cross-
circle couplings where Je < J < Jcrit. The continuous
spin components experience an Aharonov-Hopf bifurca-
tion during the process, exploiting the minimal energy
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barriers inherent in soft-spin models. We particularly fo-
cus on the intermediary time t1 following the bifurcation,
noting that at this time, the spin amplitudes have yet to
achieve unit magnitude, and the spins are not collinear.
By a later time t2 > t1, the spin vectors stabilize as the
minimization of the VISA Hamiltonian progresses. These
soft-spin vectors then exhibit Ising spin characteristics,
including unit magnitude and (anti-)parallel alignment,
while the coupling term H2 guarantees identifying the
target Ising Hamiltonian’s ground state.

Figure 3. Evolution of VISA spins for an N = 8 J-Möbius
graph with coupling constant J = 0.4. The spins reach final
states adhering to the Ising model’s collinear and unit mag-
nitude constraints. The spontaneous orientation of vectors at
time t2 leads to an adjustment of the spin vectors, aligning
the z-axis with the resultant direction. Parameters used are
ε = 0.04, γi(0) = −0.5, P (t) = t/25, α = 4, and initial condi-
tions xpi(0) uniformly distributed within [−0.01,0.01].

In Fig. (3), we depict typical trajectories of VISA vec-
tors on Bloch spheres, drawing a parallel to similar quan-
tum representations. We orient the spontaneously align-
ing spins along the z-axis to facilitate visualisation. With
a fixed interaction strength where Je < J < Jcrit and con-
sidering N = 8, we demonstrate the bifurcation dynamics
originating from the center. This visualization shows how
the three-dimensional nature of VISA allows spins to tra-
verse paths that connect various minima, ultimately con-
verging on the ground state S0. The final vector states
are indicated by black arrows, while red points mark the
terminal positions of spin vectors at sequential time steps
t. These trajectories elucidate the process by which spins
increasingly satisfy collinearity and unit magnitude con-
straints through external annealing of P (t) and the feed-
back mechanism on γi, steering the spin magnitudes to
the threshold value of ∣xi∣ = 1.

In Fig. (4), we compare VISA with CIM under equiva-
lent starting conditions, highlighting that while CIM can-
not find the ground state within the range Je < J < Jcrit,
VISA excels by leveraging the dynamics of spins in three
dimensions to identify the global minimum. Soft-spins
contribute to this success in both models by facilitat-
ing the escape from local minima through reduced en-
ergy barriers, a feature not present in hard-spin mod-

Figure 4. Panel (a) compares the trajectory evolution of VISA
(blue) and CIM (red) on anN = 8 J-Möbius ladder graph with
a coupling constant J = 0.35. Here, VISA successfully reaches
the ground state S0, while CIM remains in an excited state S1.
Both systems start from the same initial conditions, with CIM
beginning at xi(0) = a and VISA at xi(0) = (a, b, b), where a
and b are uniformly chosen from the ranges [−0.01,0.01] and[−0.0001,0.0001] respectively. Panels (b)-(d) for CIM and
(e)-(g) for VISA show the spin states at three different times
t1, t2, and t3, marked by vertical dashed lines in panel (a),
illustrating CIM’s inability to overcome the energy barrier to
reach the ground state, in contrast to VISA’s effective nav-
igation in three-dimensional space. Panel (h) compares the
VISA Hamiltonian HVISA against the CIM energy ECIM as
calculated from Eq. (7), while panel (i) focuses on the Ising
energy, with the ground state S0 indicated by a black dashed
line. Lastly, panel (j) outlines the regions in the γ − P space
that correspond to different global minima ofHVISA forN = 8,
showing S1 in blue and S0 in varying colors (yellow, orange,
red) for J values of 0.35, 0.40, and 0.45, respectively.

els. Unlike CIM, constrained by the principal eigen-
value of J to an excited state, VISA uses its multidimen-
sional advantage to bridge minima unreachable by CIM’s
one-dimensional approach. Additionally, VISA’s mecha-
nism allows for spin flipping at energy costs lower than
that required by CIM, thanks to its ability to navigate
through three-dimensional space to find the most energy-
efficient path to the global minimum. Figures (4)(a)-(i)
depict how VISA effectively minimizes Ising energy, con-
trasting with CIM’s stagnation in an excited state. For
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Je < J < Jcrit, and as the gain γi and penalty P (t) in-
crease, VISA goes towards the ground state S0, aligning
with the lowest energy state indicated by the hard-spin
Ising Hamiltonian, as shown in Fig. (4)(j). Nonetheless,
it’s important to note that increasing spin amplitudes too
fast may also inadvertently heighten energy barriers, po-
tentially impeding state transitions. Further insight into
the structure of the VISA energy landscape and its com-
parison with the energy landscape of the scalar models
can be gained by analysing the critical points (see Sup-
plementary Information). The VISA energy landscape
shows much-diminished energy barriers.

We compare VISA to two second-order scalar networks
methods, namely (i) momentum-enhanced Hopfield-Tank
(ME-HT), and (ii) spin-vector Langevin. With rigor-
ous hyper-parameter exploration phases, ME-HT outper-
forms parallel tempering, simulated annealing, and com-
mercial solver Gurobi at various QUBO benchmarks [19].
The ME-HT governing equation is

mẍi + γẋi − β(t)xi − α∂H(g(x))
∂xi

= 0, (10)

with effective mass m, momentum term γ ∈ [0,1), and
hyperparameters α and β(t), the latter of which under-
goes an annealing protocol given by β(t) = β0(1 − t/T ).
Equation (10) combines gradient descent with annealed
non-conservative dissipation, and the addition of momen-
tum distinguishes it from regular first-order HT networks
with energy landscape Eq. (6). Momentum, or the heavy-
ball method, aims to overcome the pitfalls of pathological
curvature in deep learning and accelerates standard gra-
dient descender optimizers [36, 37].

VISA can be further compared and contrasted with
the spin-vector Langevin (SVL) model that was pro-
posed as a classical analogue of quantum annealing de-
scription using stochastic Langevin time evolution gov-
erned by the fluctuation-dissipation theorem [38]. SVL is
based on the time-dependent Hamiltonian used in quan-
tum annealing H(t) = A(t)H0 + B(t)HP , where ini-
tial Hamiltonian H0 = ∑i σ

x
i , and problem Hamiltonian

HP = −∑i,j Jijσ
z
i σ

z
j , with Pauli operator σi acting on the

i-th variable. Real annealing functions satisfy boundary
conditions A(0) = B(T ) = 1 and A(T ) = B(0) = 0, where
T is the temporal length of the annealing schedule. If the
rate of change of the functions is slow enough, the system
stays in the ground state of the instantaneous Hamil-
tonian so that the Ising Hamiltonian is minimised at
t = T . Quantum annealing has shown competitive results
in quadratic unconstrained binary optimization (QUBO)
problems such as subset sum, vertex cover, graph col-
oring, and travelling salesperson [39]. The SVL model
replaces Pauli operators with real functions of continu-
ous angle σz

i → sin θi, σx
i → cos θi, and is therefore a

classical annealing Hamiltonian using continuous-valued
spins sin θi. SVL dynamics is described by a system of

coupled stochastic equations

mθ̈i + γθ̇i + α∂H(θ)
∂θi

+ ξi(t) = 0, (11)

where m is the effective mass, γ is the damping constant,
α is a hyperparameter, and ξi(t) is an iid Gaussian noise.
For long annealing times, the minima of HSIHs are ob-
tained through the transformation si = sgn(sin θi). The
gradient term in Eq. (11) is

∂H(θ)
∂θi

= −B(t) N∑
j=1Jij cos θi sin θj +A(t) sin θi, (12)

which in conjunction with fluctuation-dissipation rela-
tions ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′), give 2N
stochastic differential equations: dθi = (pi/m)dt and

dpi = (∂H(θ)
∂θi

+ γ

m
pi)dt + dWi, (13)

where dWi represents a real-valued continuous-time
stochastic Wiener process [38]. The characteristic am-
plitude bifurcation of scalar spins according to ME-HT
and SVL are given in Supplementary Information.
The key feature distinguishing VISA from the dis-

cussed models lies in its novel gain-based and dimen-
sionality annealing strategy applied across multiple di-
mensions. In the analysis of J-Möbius ladder graphs,
as shown in Fig. (5), we compute the ground state
probability for VISA alongside SVL, ME-HT, CIM,
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm [40]. Within the range Je < J < Jcrit, VISA
consistently identifies the ground state S0 with a higher
probability pGS compared to the other models.

J −G Cyclic Graphs

Next we consider the J − G cyclic graphs that are a
variant of J-Möbius ladder graphs that include addi-
tional couplings, connecting each vertex i to vertices i±k
with a weight of −G, where 1 < k < N/2. This modifica-
tion aims to explore more complex interaction patterns
and their impact on the system’s ground state behav-
ior and eigenvalue distributions, particularly focusing on
how these factors evolve in optimization and the search
for ground states in varied graph structures. The inter-
action strength range is expanded to accommodate both
ferromagnetic and antiferromagnetic interactions, with−1 ≤ J,G ≤ 1. This yields a 5-regular circulant graph
characterized by weights Jij ∈ {−1,−J,−G}, depicted in
Fig. (6). Cyclic graphs maintain their local and global
topological properties under rotational transformations,
encapsulating all connectivity information within any
row of J. By selecting the first row J1,j , we compute

eigenvalues as λn = ∑N
j=1 J1,j cos [2πn(j − 1)/N], leading
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Figure 5. N = 8 J-Möbius ladder graphs with circle (blue) and
cross-circle (red) couplings for the (a) S0 and (b) S1 configu-
rations. (c) Ground state probability for VISA, SVL, ME-HT,
CIM, and BFGS for an N = 8 J-Möbius ladder graph with
varying cross-circle couplings J . One thousand runs are used
to calculate the probability of finding the ground state pGS for
each value of J . Dashed lines corresponding to Je (black) and
Jcrit (red) show the values of J for which the leading eigen-
value changes and the ground state configuration changes,
respectively. For VISA, ε = 0.02, γi(0) = −0.5, and P (t) = αt.
For SVL, m = 1.0, ξ ∼ N(µ = 0, σ = 0.1), and γ = 0.99. For
momentum-enhanced HT, m = 1.0, and γ = 0.99. For CIM we
used p(t) = (1−p0) tanh(εt)+p0 with p0 = J−2, and ε = 0.003.
For each value of J , optimal values of α and β(0) are chosen
based on sets of preliminary runs in which they are varied.
Inset (d) illustrates the structure of Möbius ladder coupling
matrices J with Jij = 0 (white), −1 (blue), −J (red).

to λn = −2 cos(2πn/N) − J(−1)n − 2G cos(2πkn/N) [41].
We then deduce boundaries by observing eigenvalues in
the J − G plane, identifying where leading eigenvalues
and corresponding eigenvectors change their correspon-
dence with the ground and excited states. The ground
state boundaries are identified within the J −G space in
the Supplementary Information. Figure (6) depicts re-
gions where the global minimum diverges from the hyper-
cube corner of the projected eigenvector with the highest
eigenvalue.

We investigate ground state probabilities pGS over
transition regions in these graphs with both J and G
cross-circle couplings. We choose values in J − G pa-
rameter space that demonstrate transitions between re-
gions in which the eigenvector corresponding to the lead-
ing eigenvalue does not match the ground state solu-
tion (exact calculations of these regions are presented in
Supp. Inf.). Ground state probabilities for VISA, SVL,
ME-HT, CIM, and BFGS are illustrated in Fig. (7). Four
cases are analyzed, split into two sets: k = 2 and k = 3.
We consider perpendicular lines in the two-dimensional
J − G space for each set. Specifically, we vary (fix) J
and fix (vary) G. For k = 2 and G = 0.5, an easy-hard-
easy transition emerges as J increases, akin to J-Möbius

Figure 6. J − G cyclic graphs for N = 8 with couplings (a)
k = 2, and (b) k = 3. Panel (c) depicts the matrix structure
J for k = 3, where the color coding represents Jij = 0 (white),−1 (blue), −J (red), and −G (green). The ground states and
leading eigenvalue states for k = 2 are displayed in panels (d)
and (e) within the J − G space, respectively. Panel (f) de-
lineates the energy and eigenvalue boundaries, with the pink
region indicating discrepancies between ground and maximal
eigenvalue states. The sequence from panels (g) to (i) extends
this analysis to k = 3, highlighting the ground state probabili-
ties across easy-hard transitions in the J −G space, indicated
by solid red lines in panels (f) and (i).

ladder previously studied. Indeed, for Je < J < Jcrit,
pGS decreases as the eigenvalue gap ∆ increases. If, in-
stead, we fix J = −0.5, a transition occurs, centred at the
change between ground states given by Gcrit = 0.5. Here,
the hard region is bounded by eigenvalue crossing points
Ge1 = 1 −√2/2 and Ge2 = 1/√2. For k = 3, pGS is less
sensitive to the magnitude of ∆ for regions where S3 is
the ground state. This is due to the proximity between
the leading eigenvalue state S1 and ground solution S3

in topological spin space. More precisely, the transfor-
mation from S1 to S3 requires only a single spin flip,
representing a nominal energy barrier for soft-spin mod-
els. Therefore, hardness in J − G cyclic graphs derives
not just from the eigenvalue gap magnitude but addi-
tionally from the distance between hypercube corners of
the ground and leading eigenvalue states.

Random Graphs

We extend VISA’s evaluation to QUBO instances
renowned for their computational intensity as they
scale: dense fully connected graphs and sparse three-
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Figure 7. Ground state probability for VISA, SVL, ME-HT,
CIM, and BFGS for N = 8 J −G cyclic graphs with varying
cross-circle couplings J and G. (a) k = 2, J ∈ [−0.5,0.5],
and G = 0.5. (b) k = 2, J = 0.5, and G ∈ [0,1]. (c) k =
3, J ∈ [−1,0.5], and G = −0.8. (d) k = 3, J = −0.5, and
G ∈ [−1,0]. One thousand runs are used to calculate the
probability of finding the ground state pGS for each value
of J . Dashed red and black lines show where the ground
state energies and leading eigenvalues change, respectively.
For VISA, ε = 0.04, γi(0) = −0.5, and P (t) = αt. For SVL,
m = 1.0, ξ ∼ N(µ = 0, σ = 0.1), and γ = 0.99. For momentum-
enhanced HT, m = 1.0, and γ = 0.99. The general annealing
protocol for CIM is used with p0 = J − 2 and ε = 0.003. For
each value of J , optimal values of α and β(0) are chosen based
on sets of preliminary runs in which they are varied.

regular graphs with customarily distributed random cou-
plings Jij , representing Sherrington-Kirkpatrick (SK)
and weighted three-regular Max-Cut problems, respec-
tively. These models are pivotal for benchmarking
physical simulators [42–45] and are categorized under
the NP-hard complexity class [4, 46]. Unlike cyclic
graphs, these instances do not have analytically known
ground states, necessitating using the Gurobi optimiza-
tion suited for ground state estimations. Gurobi em-
ploys advanced pre-processing and heuristic enhance-
ments to expedite branch-and-bound algorithms [47].
Figure (8)(a) compares the ground state approximations
achieved by Gurobi with those by VISA for N = 100
SK and weighted three-regular Max-Cut graphs. Along-
side, we include comparisons with SVL, MR-CIM, and
CIM, where MR-CIM and CIM adapt their laser inten-
sities following a general pumping scheme p(t) = (1 −
p0) tanh(εt)+ p0. MR-CIM further applies an additional
feedback mechanism as per Eq. (9) on top of Eq. (8),
controlling soft-spin amplitudes and the dimensionality
landscape. We define the quality improvement of VISA
over another method X in terms of objective values O as(OVISA − OX)/OVISA, showcasing these metrics for SK
and three-regular problems in Fig. (8)(b), where X rep-
resents the best-performing competing method for each
instance.

Figure 8. (a) The proximity gap, defined as the ratio of
the found objective to the Gurobi objective, for VISA, SVL,
manifold reduction CIM, and CIM methods. Gurobi was
given a 30-second time limit for each of the 100 problem in-
stances with size N = 100. The instances are divided equally
between two graph topologies: dense, fully connected, and
sparse three-regular graphs. In both cases, the matrix weight
elements are drawn from the Gaussian distribution with zero
mean and unit variance, resulting in instances belonging to
the Sherrington-Kirkpatrick and weighted 3-regular Max-Cut
problems. (b) Violin plots demonstrate the distribution of
VISA’s quality improvement performance compared to the
best solution found by competing methods {SVL, MR-CIM,
CIM} across the SK and 3-Regular QUBO benchmarks.

CONCLUSIONS

This paper introduces the Vector Ising Spin An-
nealer (VISA). This model capitalizes on the advan-
tages of multidimensional spin systems, gain-based op-
eration and soft-spin annealing techniques to optimize
Ising Hamiltonians on various graph structures. VISA
distinguishes itself by enabling more efficient navigation
through the solution space, enhancing spin mobility in
higher-dimensional spaces, and providing a robust frame-
work for connecting local minima and reducing energy
barriers.

A key focus of VISA is its ability to recover ground
states effectively, even in scenarios where these states do
not correspond to the principal eigenvector of the cou-
pling matrix. The model’s performance was numerically
evaluated against other methods, demonstrating its su-
perior ability to find ground states across different graph
types and complex QUBO instances. Thus, it highlights
its potential to address NP-hard problems.

Future research could explore the role of defects in
spin models, such as topological defects, domain walls,
and vortex rings and their role in achieving the ground
state during gain-based operation. Vortices may ex-
hibit more efficient annihilation properties in higher-
dimensional systems, such as those utilized by VISA.
This is potentially due to the additional spatial degrees of
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freedom, which could facilitate the merging or cancella-
tion of vortices and anti-vortices, a phenomenon less con-
strained than in two-dimensional spaces. This enhanced
annihilation could lead to a smoother energy landscape,
aiding the system in avoiding local minima and more ef-
fectively converging to the ground state.

By leveraging multidimensional spins, VISA opens new
avenues for developing analogue optimization machines,
potentially incorporating quantum effects to enhance
computational capabilities. The prospects of applying di-
mensionality annealing techniques in optical-based Ising
machines suggest an exciting future for speed-of-light
computation and accurate ground state recovery, mark-
ing a significant advancement in optimization technolo-
gies.
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SUPPLEMENTARY INFORMATION

Critical Points of VISA Hamiltonian

To determine the critical points of HVISA, we set
∂E
∂xi
= 0 for all i, where i ranges from 1 to N . Fig-

ure (9) depicts these critical points, with the minima cor-
responding to the states S0 and S1 emphasized. As the
gain γi(t) and the collinearity penalty P (t) are system-
atically increased, a transition in the ground state from
S1 to S0 is observed. Notably, there is an infinite con-
tinuum of (γi, P ) pairs where S0 and S1 share the same
energy level. This continuum forms a demarcation line
in the γ −P space, illustrated in Fig. (4)(j). At a specific
point on this boundary, as depicted in Fig. (9)(c), both
S0 and S1 emerge as ground states. Furthermore, Fig. (9)
quantifies the average Euclidean distance ∆d that each
soft-spin xpi needs to traverse to transition from the local
minimum S1 to the global minimum S0, passing through
the nearest saddle point. In every scenario analyzed, the
VISA model demonstrates a shorter requisite distance
compared to the analogous CIM model, underscoring its
efficiency in navigating the energy landscape.

Figure 9. Critical points of HVISA for N = 8 J-Möbius ladder
graph with J = 0.4. Each point is characterized by its energy
E and Euclidean distance from the origin d. The number of
soft spins normalizes distance d. Blue and red circles denote
minima for states S1 and S0, respectively, while black cir-
cles indicate other minima and saddle points of HVISA. The
closest saddle point (SP) to excited state S1 is highlighted in
green. Progressing from figures (a) to (f), we systematically
increase the gain γi = γ for all i and the penalty P , following
a typical annealing schedule. Notably, at (c), with γ = −0.087
and P = 0.32, we reach a critical juncture that delineates the
transition between global minima S0 and S1, as illustrated
in Fig. (4)(j), where S0 and S1 attain equal energy levels E.
Adjacent bars to the main plots list distance ∆d for journey
S1 → SP→ S0 for VISA (blue) and CIM (red), where for CIM
we take p = γ.

Basins of Attraction

Figure (10) illustrates the basins of attraction for a
range of gain γi = γ∀i and penalty P values on J-
Möbius ladder graphs with J = 0.4. Panels (a) to (f)
in the figure show the evolution of these basins as γ and
P are incrementally increased, following a typical gain-
based and penalty annealing schedule in the VISA model.
The basins of attraction are defined by the initial states
xpi(0), uniformly distributed across the interval [−1,1],
which converge to distinct minima through gradient de-
scent. Initially, at (γ,P ) = (−0.5,0), the global minimum
is at S1, which has the largest basin of attraction, cap-
turing all initial states towards S1. However, as γ and
P progressively increase, the attraction basin associated
with the excited state S0 expands. Beyond the critical
threshold in the γ − P parameter space, demonstrated
in Fig. (4)(j), S0 transitions to become the new ground
state. Further annealing of γ and P beyond this thresh-
old reveals additional higher-energy states through the
process of gradient descent.

Second-Order Scalar Networks Minimizing the Ising
Hamiltonian on J-Möbius Ladder Graphs

Figure (11) illustrates the Aharonov-Hopf bifurcation
in soft-spins within the ME-HT model. For each time
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Figure 10. Basins of attraction of the VISA model land-
scape on J-Möbius ladder graph. We take N = 8 and
J = 0.4 with various gains γi = γ∀i and penalties P as
they anneal in the VISA method. Four thousand ran-
domly distributed starting points xpi(0) in [−1,1] are plot-
ted with colors corresponding to minima reached via gradi-
ent descent using Newton’s method. (γ,P ) (a) (−0.5,0), (b)(−0.25,0.15), (c) (−0.087,0.32), (d) (0.25,0.5), (e) (0.5,0.75),
and (f) (0.75,1.0). To characterize points, the magnetization

magnitude ∣m∣ = √m2
x +m2

y +m2
z and correlation magnitude∣Xcorr∣ =√X2

x +X2
y +X2

z are used, where mp = ∑i xpi/N and

Xp = ∑i(xpi−mp)(xp(i+1)−mp)/∑i(xpi−mp)2 are the average
magnetization and correlations along the p-axis, respectively.
For small γ and P , the basin of attraction is dominated by
the S1 state. As γ and P grow, the volume of the basin
of attraction for state S0 increases. For γ and P , which lie
on the critical boundary, shown here in (c), both S0 and S1

states have the same energy. As γ and P increase further,
S0 becomes the ground state. This is indicated by the switch
between excited (red) and ground (blue) states.

step t, we apply a clipping function [xi]t = sgn([xi]t)
when ∣[xi]t∣ > 1, alongside a nonlinear activation function
g(xi) = tanh(xi). The parameter α is adjusted according
to the largest positive eigenvalue λmax of the adjacency
matrix J. Concurrently, Fig. (12) displays the temporal
evolution of scalar amplitudes as dictated by the SVL
model, applied to the same Möbius graph with J = 1.

Eigenvalues, Eigenvectors, and Ground States of
J −G Cyclic Graphs

Here we refer to J −G cyclic graph defined in the main
text, and illustrated in Figs. (6)(a)-(b) for N = 8. For
general N with couplings Jij ∈ {−1,−J,−G}, the N eigen-
values are given by

λn = −2 cos(2πn/N) − J(−1)n − 2G cos(2πkn/N), (14)

where n = 1,2, . . . ,N . Equation (14) follows from sub-
stituting J1,j into the general form of matrix eigenvalues
for cyclic graphs given in the main text. As J and G

Figure 11. Evolution of momentum enhanced Hopfield-Tank
method for an N = 8 J-Möbius ladder network with J = 1. (a)
The amplitudes connected by the frustrated edges are lower
than in the rest of the system and are shown in red. (b)
The corresponding Ising Hamiltonian decreases in time, and
the ground state is found, with energy given by the dashed
red line. (c) Schematic representation of state S1 realised by
the soft-spin momentum enhanced HT model. Here, m = 1.0,
α = 2.5/λmax, β = 1.5(1 − t/T ), γ = 0.7, and xi(0) is chosen
uniformly at random from the range [−0.01,0.01]. Fourth
order Runge-Kutta is used with fixed time step ∆t = 0.1 to
solve Eq. (10).

vary within [−1,1], the leading eigenvalue changes. Con-
strained to this domain, for N = 8 and k = 2, the leading
eigenvalues are given by n = 4,5,6. Substituting these
values into Eq. (14) and equating each pair gives three
boundaries defined by J = 1 −√2/2 −G, J = G − 1/√2,
and G = 1/2. Similarly for k = 3, we obtain two unique
leading eigenvalues (n = 4,5) in the J −G domain, with
boundary J = 1−√2/2+(1+1/√2)G. Eigenvectors corre-
sponding to leading eigenvalues are used to deduce anal-
ogous Ising states by projecting the eigenvector onto the
nearest hypercube corner [−1,1]N . These Ising states are
given in Figs. (6)(e) and (h). Gurobi is used to obtain
ground states in J − G space. Four unique configura-
tions are found with N = 8: namely S0, S1, and S2 for
k = 2, and S0, S1, and S3 for k = 3. S2 and S3 are de-
fined as the configurations of Ising spins given by S2 =(1,1,−1,−1,1,1,−1,−1) and S3 = (1,1,−1,1,1,−1,1,−1).
For even N/2, these four states have energies

E0(J,G) = (J − 2 − 2G(−1)k+1)N/2, (15)

E1(J,G) = 4 − (J + 2)N/2 + (−1)k(N − 4k)G, (16)

E2(J,G) = ((−1)N/4J + (1 + (−1)k)(−1)dG)N/2, (17)

E3(J,G) = 4 −N + (2 −N/2)J + (−1)k(N − 4k)G, (18)

where d = k/2 if k is even, and 0 otherwise. Equating
the relevant energies for k = 2 gives three boundaries
defined by separators J = 1/2 −G, J = G − 1/2, and G =
1/2. Similarly for k = 3, the boundary edges are given
by J = 1/2 + 3/2G, J = 2/3 + 2G, and J = 0. Eigenvalues
and ground states for J −G cyclic graphs are shown in
Fig. (13) for values of J and G considered in the main
text.
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Figure 12. Evolution of the spin-vector Langevin (SVL)
model. Applying the SVL model on an N = 8 J-Möbius
ladder network with coupling strength J = 1. (a) depicts
the amplitudes connected by frustrated edges, shown in red,
which are lower than those in the rest of the system. (b) il-
lustrates the real annealing functions A(t) in blue and B(t)
in red, satisfying the boundary conditions A(0) = B(T ) = 1
and A(T ) = B(0) = 0, over an annealing period T = 100. (c)
shows the total HamiltonianH(t) = A(t)H0+B(t)HP dynam-
ics: it decreases initially as the ground state of H0 is reached,
then increases as A(t) and B(t) are annealed. Post a criti-
cal juncture, the SVL model aims to minimize the problem
HamiltonianHP , identifying the ground state of the J-Möbius
ladder, indicated by the dashed red line. Parameters used are
m = 1.0, α = 1/λmax, γ = 1.0, and noise ξ = 0. Annealing
schedules are defined as A(t) = 1− t/T and B(t) = t/T . Initial
phases θi(0) are randomly selected from [−π/2, π/2]. Equa-
tion (11) is solved using a fourth-order Runge-Kutta method
with a fixed time step of ∆t = 0.1.
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CRITICAL POINTS OF VISA HAMILTONIAN

To determine the critical points of HVISA, we set
∂E
∂xi
= 0 for all i, where i ranges from 1 to N . Figure (S1)

depicts these critical points, with the minima correspond-
ing to the states S0 and S1 emphasized. As the gain γi(t)
and the collinearity penalty P (t) are systematically in-
creased, a transition in the ground state from S1 to S0

is observed. Notably, there is an infinite continuum of(γi, P ) pairs where S0 and S1 share the same energy
level. This continuum forms a demarcation line in the
γ−P space, illustrated in Fig. (??)(j). At a specific point
on this boundary, as depicted in Fig. (S1)(c), both S0

and S1 emerge as ground states. Furthermore, Fig. (S1)
quantifies the average Euclidean distance ∆d that each
soft-spin xpi needs to traverse to transition from the local
minimum S1 to the global minimum S0, passing through
the nearest saddle point. In every scenario analyzed, the
VISA model demonstrates a shorter requisite distance
compared to the analogous CIM model, underscoring its

efficiency in navigating the energy landscape.

BASINS OF ATTRACTION

Figure (S2) illustrates the basins of attraction for a
range of gain γi = γ∀i and penalty P values on J-
Möbius ladder graphs with J = 0.4. Panels (a) to (f)
in the figure show the evolution of these basins as γ and
P are incrementally increased, following a typical gain-
based and penalty annealing schedule in the VISA model.
The basins of attraction are defined by the initial states
xpi(0), uniformly distributed across the interval [−1,1],
which converge to distinct minima through gradient de-
scent. Initially, at (γ,P ) = (−0.5,0), the global minimum
is at S1, which has the largest basin of attraction, cap-
turing all initial states towards S1. However, as γ and
P are progressively increased, the basin of attraction as-
sociated with the excited state S0 expands. Beyond the
critical threshold in the γ − P parameter space, demon-
strated in Fig. (??)(j), S0 transitions to become the new
ground state. Further annealing of γ and P beyond this
threshold reveals additional higher-energy states through
the process of gradient descent.
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Figure S1. Critical points of HVISA for N = 8 J-Möbius ladder
graph with J = 0.4. Each point is characterized by its energy
E and Euclidean distance from the origin d. The number of
soft spins normalizes distance d. Blue and red circles denote
minima for states S1 and S0 respectively, while black circles
indicate other minima and saddle points of HVISA. The clos-
est saddle point (SP) to excited state S1 is highlighted in
green. Progressing from figures (a) to (f), we systematically
increase the gain γi = γ for all i and the penalty P , following
a typical annealing schedule. Notably, at (c), with γ = −0.087
and P = 0.32, we reach a critical juncture that delineates the
transition between global minima S0 and S1, as illustrated in
Fig. (??)(j), where S0 and S1 attain equal energy levels E.
Adjacent bars to the main plots list distance ∆d for journey
S1 → SP→ S0 for VISA (blue) and CIM (red), where for CIM
we take p = γ.
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Figure S2. Basins of attraction of the VISA model landscape
on J-Möbius ladder graph. We take N = 8 and J = 0.4 with
various gains γi = γ∀i and penalties P as they anneal in
the VISA method. 4000 randomly distributed starting points
xpi(0) in [−1,1] are plotted with colors corresponding to min-
ima reached via gradient descent using Newton’s method.(γ,P ) (a) (−0.5,0), (b) (−0.25,0.15), (c) (−0.087,0.32), (d)(0.25,0.5), (e) (0.5,0.75), and (f) (0.75,1.0). To characterize

points, the magnetization magnitude ∣m∣ = √m2
x +m2

y +m2
z

and correlation magnitude ∣Xcorr∣ =√X2
x +X2

y +X2
z are used,

where mp = ∑i xpi/N and Xp = ∑i(xpi − mp)(xp(i+1) −
mp)/∑i(xpi −mp)2 are the average magnetization and cor-
relations along the p-axis, respectively. For small γ and P ,
the basin of attraction is dominated by the S1 state. As γ
and P grow, the volume of the basin of attraction for state
S0 increases. For γ and P which lie on the critical boundary,
shown here in (c), both S0 and S1 states have the same en-
ergy. As γ and P increase further, S0 becomes the ground
state. This is indicated by the switch between excited (red)
and ground (blue) states.


