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A B S T R A C T

We review the issue of localization in quantum field theory and detail the nonrelativistic limit.
Three distinct localization schemes are examined: the Newton–Wigner, the algebraic quantum
field theory, and the modal scheme. Among these, the algebraic quantum field theory provides
a fundamental concept of localization, rooted in its axiomatic formulation. In contrast, the
Newton–Wigner scheme draws inspiration from the Born interpretation, applying mainly to
the nonrelativistic regime. The modal scheme, relying on the representation of single particles
as positive frequency modes of the Klein–Gordon equation, is found to be incompatible with
the algebraic quantum field theory localization.

This review delves into the distinctive features of each scheme, offering a comparative
analysis. A specific focus is placed on the property of independence between state preparations
and observable measurements in spacelike separated regions. Notably, the notion of localization
in algebraic quantum field theory violates this independence due to the Reeh–Schlieder theorem.
Drawing parallels with the quantum teleportation protocol, it is argued that causality remains
unviolated. Additionally, we consider the nonrelativistic limit of quantum field theory, revealing
the emergence of the Born scheme as the fundamental concept of localization. Consequently,
the nonlocality associated with the Reeh–Schlieder theorem is shown to be suppressed under
nonrelativistic conditions.

. Introduction

In the NonRelativistic Quantum Mechanics (NRQM), the notion of localization is notoriously given in terms of wave functions
nd position operator and follows Born’s interpretation of quantum mechanics. States are localized in the support of their wave
unctions, whereas second-quantized observables are localized in �⃗� if they are generated by creators and annihilators of particles
n �⃗�. Also, states are orthogonal if the supports of their wave functions are disjoint and, hence, if they are localized in different
egions.

This notion of localization was then extended to QFT by Newton and Wigner [1] and by Fulling [2]. The so-called Newton–Wigner
ocalization is based on the orthogonality condition between states in disjoint regions and other natural requirements that make
t conceptually equivalent to the Born scheme. At variance with Born, however, Newton and Wigner [1] worked in the context of
elativistic theories.

Notably, the Hegerfeldt theorem [3] forbids any notion of localization that assumes causal propagation of wave functions and
rthogonality condition between states in disjoint regions of space. The resulting superluminal propagation of wave functions in
he Newton–Wigner scheme is unsatisfactory as it violates the relativistic postulate of causality in QFT. This led to the idea that the
ewton–Wigner scheme is not suited for a genuine description of local phenomena in QFT.
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A fundamental notion of localization is, instead, provided by the Algebraic Quantum Field Theory (AQFT) formalism [4–8]. The
lgebraic approach to QFT is based on the definition of local algebras by means of quantum fields in spacetime points. This gives
natural definition of local observables and local preparation of states.

At variance with the Newton–Wigner scheme, the AQFT framework provides a genuine notion of localization and it faithfully
escribes local experiments in isolated laboratories. The main argument is that the instantaneous propagation of Newton–Wigner
ave functions is in conflict with relativity. Conversely, in AQFT, the microcausality condition appears as an axiom of the theory
nd is expressed by the commutativity of quantum fields in spacelike separated points.

Unfortunately, the microcausality condition does not guarantee the independence between the preparation of states and the
easurement of observables in spacelike separated regions. The Reeh–Schlieder theorem [9] demonstrates that states that are

ocalized with respect to the AQFT scheme are not necessarily strictly localized [10,11]. Explicitly, this means that the outcome
f measurements in a region B may depend on the local preparation of states in A even if A and B are causally disconnected.

However, it has been argued that such a nonlocal effect does not violate causality since it only comes from selective nonunitary
preparations of states [12–15].

At variance with the AQFT, the Newton–Wigner scheme is not affected by the Reeh–Schlieder nonlocality. In particular, any
state localized with respect to the Newton–Wigner scheme is also strictly localized and does not affect measurements in any other
disjoint space regions. In this case, we say that the strict localization property is always satisfied.

Also, as a consequence of a corollary of the Reeh–Schlieder theorem [12,15], no local creator and annihilator operator can be
defined in the AQFT formalism. This means that, contrary to the Newton–Wigner scheme, the AQFT scheme is not characterized by
local Fock spaces and local vacua.

All the incompatibilities between the two localization schemes disappear in the nonrelativistic limit. In particular, it has been
proven that any operator that is localized in �⃗� with respect to the Newton–Wigner scheme approximates to an operator localized in
⃗ with respect to the AQFT scheme [16,17]. This result is in agreement with the fact that the Born–Newton–Wigner and the AQFT
schemes are suited for the description of phenomena in, respectively, the nonrelativistic and the relativistic regime.

Owing to the convergence to the AQFT, the Newton–Wigner scheme becomes valid in the nonrelativistic regime. Furthermore,
he Reeh–Schlieder nonlocal effect is suppressed and any state locally prepared in a space region 1 is also strictly localized in 1,

even if the preparation is a selective nonunitary operation.
In addition to the Newton–Wigner and the AQFT scheme, we study the modal localization scheme, which is based on the

representation of single particles as positive frequency modes of the Klein–Gordon equation [18]. The fact that states are localized
in the support of the corresponding modes is generally inaccurate, since a genuine notion of localization is only given by the AQFT
formalism which is incompatible with the modal scheme in the relativistic regime. However, in the nonrelativistic limit, the two
localization schemes converge.

In our previous works [19–21], we assumed that nonrelativistic states are localized in the support of their modal wave functions.
Here, we find a justification for such a claim by demonstrating the convergence between the modal and the AQFT scheme.

This manuscript is intended to be an introductory review on the problem of localization in QFT. We consider a Minkowski
spacetime  represented by the coordinates 𝑥𝜇 = (𝑡, �⃗�) and characterized by the flat metric 𝜂𝜇𝜈 = diag(−𝑐−2, 1, 1, 1). We focus on
a real scalar field �̂�(𝑥𝜇) since the only important elements of the theory are captured by quantum fields without internal degrees
of freedom. The corresponding quantum states are elements of the Minkowski–Fock space M constructed from the creators of the
Klein–Gordon particles with defined momenta �̂�†(�⃗�) and from the Minkowski vacuum |0M⟩, which is defined as the state annihilated
y �̂�(�⃗�), i.e., �̂�(�⃗�)|0M⟩ = 0 for any �⃗� ∈ R3. The algebra of operators acting on M will be noted as AM.

The paper is organized as follows. In Sections 2–4 we define the Newton–Wigner, the AQFT and the modal schemes, respectively.
heir features are then shown and compared to each other in Section 5. In Section 6, we study the localization in NRQM; in particular,
e define the Born scheme and we show the convergence of all localization schemes in the nonrelativistic limit. Conclusions are
rawn in Section 7.

. Newton-Wigner scheme

Newton and Wigner [1] addressed the problem of localization of particles in Relativistic Quantum Mechanics (RQM) by
eriving the position observable and its eigenstates from first principles. They showed that the definition of localization is uniquely
etermined by some natural requirements. They assumed the following general theoretic postulates on the basis of which a particle
an be considered localized at time 𝑡 = 0 in �⃗�: (i) the superposition of localized states is localized as well; (ii) the set of localized
tates in �⃗� is invariant under rotations and time and space reflections with �⃗� as a fixed point; (iii) states localized in different spatial
ositions �⃗� ≠ �⃗�′ are orthogonal; (iv) some regularity conditions of mathematical good behavior. From these assumptions, Newton
nd Wigner [1] derived the definition of a unique position operator ̂⃗𝑥NW and localized states |�⃗�NW⟩. The operator was then second
uantized by Fulling [2], who reformulated the theory in the context of QFT.

Newton and Wigner [1] started from the representation of the spinless elementary particles (i.e., Klein–Gordon single particles)
ia irreducible representation of the Poincare group (i.e., energy, momentum and angular momentum). Then, they studied the case
f particles with spin and finite mass. The uniqueness of the position operator satisfying the natural transformation conditions in
QM with arbitrary spin was later discussed by Weidlich and Mitra [22] and led to the same conclusions as Newton and Wigner
1].

The Newton–Wigner scheme in QFT predicts a phenomenon of superluminal spreading [23] that is in contrast with the relativistic
2

otion of causality. This is a consequence of the Hegerfeldt theorem [3,24], whose only hypotheses are the positivity of the energy
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of relativistic particles and the orthogonality condition of states localized in disjoint regions. Due to the violation of causality, the
Newton–Wigner scheme is not regarded as fundamental in nature. Conversely, in Section 3, we will see that the notion of locality
provided by the AQFT does not lead to superluminal signaling and can be regarded as a genuine localization scheme in QFT.

The present section is organized as follows. In Section 2.1, we briefly show the results of Newton and Wigner’s work in the
ontext of RQM. Then, in Section 2.2 we consider the second-quantized version of the position operator to define the Newton–
igner scheme in QFT. Lastly, in Section 2.3, we review the literature about the Hegerfeldt theorem and its consequences on the

roblem of localization.

.1. Newton-Wigner scheme in RQM

Here, we give the definition of Newton–Wigner position operator and wave functions in the context of RQM.
States with defined momentum |�⃗�⟩ are defined as eigenstates of the momentum operator ̂⃗𝑘, satisfying the following orthonor-

malization property

⟨�⃗�|�⃗�′⟩ = 𝛿3(�⃗� − �⃗�′). (1)

Starting from the definition of |�⃗�⟩, Newton and Wigner [1] derived the unique state satisfying conditions (i)–(iv) as

|�⃗�NW⟩ = ∫R3
𝑑3𝑘 𝑒−𝑖�⃗�⋅�⃗�

√

(2𝜋)3
|�⃗�⟩. (2)

Eq. (2) describes the state localized in �⃗� at time 𝑡 = 0 according to the Newton–Wigner scheme in RQM. This provides the
efinition of the position operator

̂⃗𝑥NW = ∫R3
𝑑3𝑥�⃗�|�⃗�NW⟩⟨�⃗�NW|, (3)

hose eigenstates are |�⃗�NW⟩ with eigenvalues �⃗�. Also, for any state |𝜓⟩, Newton and Wigner [1] defined the wave function in
osition space as

𝜓NW(𝑡, �⃗�) = ⟨�⃗�NW|𝜓(𝑡)⟩ = ∫R3
𝑑3𝑘 𝑒

−𝑖𝜔(�⃗�)𝑡+𝑖�⃗�⋅�⃗�
√

(2𝜋)3
�̃�(�⃗�), (4)

with

𝜔(�⃗�) =

√

(

𝑚𝑐2
ℏ

)2
+ 𝑐2|�⃗�|

2
(5)

s the frequency of �⃗� and with �̃�(�⃗�) as the wave function in momentum space, defined as

�̃�(�⃗�) = ⟨�⃗�|𝜓⟩. (6)

ere, 𝑚 is the mass of the particle. The inner product between states can be written in terms of their wave function in position
pace as

⟨𝜓|𝜓 ′
⟩ = ∫R3

𝑑3𝑥𝜓∗
NW(𝑡, �⃗�)𝜓 ′

NW(𝑡, �⃗�), (7)

which is the familiar 𝐿2(R3) scalar product.
Notice that in NRQM, wave functions in momentum space are related to wave functions in position space by means of the Fourier

transform. The same occurs in RQM between the wave functions �̃�(�⃗�) and 𝜓NW(0, �⃗�) [Eq. (4)]. This analogy leads to the equivalence
between the Newton–Wigner and the Born localization schemes, which will be detailed in Section 6.2.

Newton and Wigner [1] already pointed out in their original work that the position operator ̂⃗𝑥NW is not relativistically covariant.
For any Lorentz boost 𝛬𝑣 ∶ (𝑡, �⃗�) ↦ (𝑡′, �⃗�′), the state that is localized in (say) �⃗� = 0 at 𝑡 = 0 is not localized in �⃗�′ = 0 at 𝑡′ = 0. Hence,
two inertial observers do not share the same notion of localization. This is an important argument against the Newton–Wigner
localization program, since Lorentz transformed frames are physically equivalent in relativistic theories.

Furthermore, the Newton–Wigner localization is found not to be preserved in time. Specifically, a particle localized in a bounded
region at 𝑡 = 0 will develop infinite tails at immediately later times 𝑡 ≠ 0, exceeding the light cone of the initial region [23]. The
phenomenon of superluminal spreading of the wave functions was then proved to occur for a more general class of localization
schemes. The only condition is a nonconstant Hamiltonian that is a semibounded function of the particle momentum [24]. This
model-independent result goes under the name of Hegerfeldt theorem and will be discussed in Section 2.3.

The non-covariant behavior of the position operator ̂⃗𝑥NW and the acausal spreading of the wave functions make the Newton–
Wigner localization unsatisfactory for a fully relativistic theory. The solution to this problem will be found by noticing that the
operator ̂⃗𝑥NW does not entail any fundamental notion of locality; conversely, it is a mathematical artifice that comes from the
nonrelativistic theory. Only in the nonrelativistic limit of RQM, the Newton–Wigner scheme obtains a genuine notion of locality.
3

This result will be shown in Section 6.3.
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2.2. Newton-Wigner scheme in QFT

In Section 2.1, we worked in the context of RQM and used the definition of first-quantized Newton–Wigner position operator ̂⃗𝑥NW
to define localized states and wave functions in position space. Here, we apply these results to the framework of QFT. In particular,
we define localized states and observables by means of a second-quantized version of ̂⃗𝑥NW. The method is based on the natural
embedding of RQM in QFT as the theory of single particle states of the corresponding quantum fields.

For any scalar field �̂�(𝑡, �⃗�), the corresponding single particle state with defined momentum �⃗� is defined as

|�⃗�⟩ = �̂�†(�⃗�)|0M⟩, (8)

where �̂�†(�⃗�) is a creator operator satisfying the canonical commutation identities

[�̂�(�⃗�), �̂�†(�⃗�′)] = 𝛿3(�⃗� − �⃗�′), [�̂�(�⃗�), �̂�(�⃗�′)] = 0. (9)

Single particle states with defined position are defined by Eq. (2). Owing to Eq. (8), Eq. (2) is equivalent to

|�⃗�NW⟩ = �̂�†NW(�⃗�)|0M⟩, (10)

where

�̂�NW(�⃗�) = ∫R3
𝑑3𝑘 𝑒𝑖�⃗�⋅�⃗�

√

(2𝜋)3
�̂�(�⃗�) (11)

s the inverse of the Fourier transform of the annihilation operator �̂�(�⃗�).
Notice that there is a one-to-one mapping between the operators �̂�NW(�⃗�) and �̂�(�⃗�) for varying �⃗� and �⃗�. Hence, the entire

inkowski–Fock algebra AM is generated by �̂�NW(�⃗�) with varying �⃗�, in the sense that any operator acting on the Minkowski–Fock
pace M can be written as a linear combination of products of �̂�NW(�⃗�) and �̂�†NW(�⃗�) operators.

Hereafter, the algebra generated by �̂�NW(�⃗�) with fixed �⃗� is denoted as ANW
M (�⃗�). We say that ANW

M (�⃗�) is a local algebra with respect
o the Newton–Wigner scheme. Any element of ANW

M (�⃗�) is an operator that is localized in �⃗�. Conversely, any local state |𝜓⟩ is
he result of local operations on the vacuum background |0M⟩. Hence, |𝜓⟩ is said to be localized in �⃗� if there is a local operator
̂ ∈ ANW

M (�⃗�) such that |𝜓⟩ = �̂�|0M⟩.
The definition of localized states and observables can also be generalized to extended regions. For any region  ⊂ R3, we define

NW
M () as the local algebra in  generated by the operators �̂�NW(�⃗�) with �⃗� ∈  . We say that the operator �̂� and the state |𝜓⟩ = �̂�|0M⟩

re localized in  if �̂� is an element of ANW
M ().

The definitions of local operators and states provided here come from a second-quantized generalization of ̂⃗𝑥NW. Notice that,
y embedding the relativistic theory of single particles, the Newton–Wigner scheme in QFT inherits all the issues concerning the
ocalization of states described by Section 2.1. This includes the instantaneous propagation of localized states and the consequent
iolation of causality, which will be discussed in the next subsection.

.3. Hegerfeldt theorem

Hegerfeldt [3] showed that the phenomenon of instantaneous spreading for a relativistic particle does not occur only in the
ewton–Wigner scenario. An alternative proof was later provided by Perez and Wilde [25]. Hegerfeldt and Ruijsenaars [24]

ecognized that relativity is not needed to prove the results, while positivity of the energy and translation invariance suffice to
ive the instantaneous spreading. Then, Hegerfeldt [26] recognized that translation invariance is also not needed and, hence, the
ole of positivity of energy appears to be crucial in the instantaneous spreading of the wave function. However, when translation
nvariance is not considered, the localized particle either develops infinite tails immediately after or stays in its support indefinitely.

Hegerfeldt and Ruijsenaars [24] showed that any particle confined in a bounded region can be found in spacelike separated
egions at later times if the Hamiltonian is a nonconstant semibounded function of the momentum and translation invariant.
nder stronger assumptions, the spreading of the wave function is over all of space. The conditions considered by Hegerfeldt and
uijsenaars [24] are met in RQM and QFT, where the energy of particles 𝜔(�⃗�) is a function of the momentum �⃗� and is always
ositive.

The generality of the results is given by the fact that no specific definition of localization has been considered. To prove that no
tate can be localized in a finite region for a finite time interval, Hegerfeldt and Ruijsenaars [24] only assumed that states localized
n disjoint regions are orthogonal to each other. Also, to show that the spreading is over all of space, the authors assumes the
xistence of a positive operator �̂�() for any space region  ⊂ R3, such that ⟨𝜓|�̂�()|𝜓⟩ ∈ [0, 1] is the probability of finding the
article in  . For instance, in the case of Newton–Wigner localization, �̂�() is defined as

�̂�() = 1
|| ∫

𝑑3𝑥�̂�†NW(�⃗�)�̂�NW(�⃗�), (12)

where || is the volume of  .
The apparent contradiction with the causal nature of the Klein–Gordon equation (or any other hyperbolic equation satisfying

finite propagation speed, e.g., Maxwell equation, Dirac equation) was argued by Afanasev et al. [27]. Given any positive frequency
solution of the Klein–Gordon equation 𝜓(𝑡, �⃗�) such that 𝜓(0, �⃗�) = 0 for any �⃗� outside  , then one finds that 𝜓(𝑡, �⃗�) = 0 in any
4
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region spacelike distant from  only if 𝜕𝑡𝜓(𝑡, �⃗�)|𝑡=0 = 0, which does not occur for positive frequency solutions. This means that the
localization in a finite region for a finite time is only possible for superpositions of positive and negative frequency solutions of the
Klein–Gordon equation, which are excluded by the hypotheses of the Hegerfeldt theorem.

To overcome the obstruction represented by the Hegerfeldt’s theorem, Moretti [28] recently proposed a solution based on the
idea by Terno [29]. He considered massive real scalar fields and defined a spatial localization observable using the family of
Poincaré-covariant POVMs

𝖠𝑛𝑡(𝛥) = �̂�−1∕2
𝑛 𝑃1 ∫𝛥

𝑑𝛴𝑛𝑡𝑛
𝜇𝑛𝜈∶�̂�𝜇𝜈∶𝑃1�̂�

−1∕2
𝑛 , (13)

where 𝛥 ranges in the measurable sets of the rest 3-space 𝛴𝑛𝑡 of every given Minkowski reference frame 𝑛 at time 𝑡. Here, �̂�𝑛 is
the Hamiltonian operator in the reference frame 𝑛, 𝑃1 is the projector onto the single particle space and ∶�̂�𝜇𝜈∶ is the normally
ordered stress–energy tensor operator. From Eq. (13) one can notice that Terno’s notion of localization is associated to the energy
distribution of the single particle in the chosen reference frame 𝑛. Physically, this means that states are assumed to be localized
where their energy is.

This approach differs from the one proposed by Newton and Wigner [1] who, instead, considered the family of PVMs associated
to the spectral decomposition of the Newton–Wigner position operator. De Rosa and Moretti [30] argued that the reason why
PVMs may be ruled out is because only macroscopic objects and devices can be practically controlled in laboratory and, hence, the
condition of no superluminal propagation of information is only required at the macroscopic level. Moretti [28] proved that the first
moment of Terno’s POVMs is equivalent to a restriction of the Newton–Wigner position operator, preserving desirable properties—
such as Poincaré covariance—while avoiding unphysical features like those highlighted by Hegerfeldt’s theorem. At variance with
the Newton–Wigner PVMs, the POVMs proposed by Terno do not allow for sharply localized states in bounded regions, but admits
states that are almost localized with arbitrary precision.

Terno’s POVMs not only avoid the pathologies represented by the Hegerfeldt’s theorem, but also satisfy part of the causality
condition formulated by Castrigiano [31]. The complete causality requirement is also validated for an improved version of Terno’s
POVMs, which accounts for the probability to find a particle in 𝛥 ∈ 𝛴𝑛′𝑡′ using detectors which are synchronized with 𝑛′ but at rest
in another reference frame 𝑛 ≠ 𝑛′ [28]. This result was obtained by relaxing the twice presence of the same 𝑛 in Eq. (13) and by
distinguishing between the reference frame 𝑛′ for 𝛥 ∈ 𝛴𝑛′𝑡′ and the rest frame 𝑛 for the employed detectors.

Such generalized Terno’s POVMs are constructed on all spacelike flat Cauchy surfaces associated to the reference frame 𝑛. In
a more recent work, De Rosa and Moretti [30] proved that these POVMs give rise to a notion of spatial localization on spacelike
Cauchy surfaces in Minkowski spacetime, where the possible regions 𝛥, in which a particle can be detected, are subsets of a generic
spacelike Cauchy surface 𝑆. Each Cauchy surface 𝑆 is equipped with a POVM 𝖠𝑆 that satisfies the coherence condition 𝖠𝑆 (𝛥) = 𝖠𝑆′ (𝛥)
when 𝛥 ⊂ 𝑆 ∩ 𝑆′ and the causality condition 𝖠𝑆′ (𝛥′) ≥ 𝖠𝑆 (𝛥), with 𝛥′ as the region of influence of 𝛥 on 𝑆′, generalizing the one
by Castrigiano [31].

3. AQFT scheme

In Section 2 we reviewed the Newton–Wigner approach to the problem of localization in QFT. We remarked that the assumption
made by Newton and Wigner [1] are included in the hypotheses of the Hegerfeldt theorem. The results of the theorem are
incompatible with the causality principle, as they imply a superluminal propagation of the localization condition. The paradox
can be resolved by noticing that, in QFT, the spacetime coordinates 𝑥𝜇 appear as variables of the fields �̂�(𝑥𝜇) and the causality
condition is defined via commutativity of spacelike separated fields.

In the framework of AQFT [4–8], any spacetime event  ∈  is provided with the local algebra A(), which is generated by
the operator �̂�(𝑥𝜇) with 𝑥𝜇 as the Minkowski coordinate representing  .1 Any element of A() is a linear combination of powers of
�̂�(𝑥𝜇). More generally, for any spacetime region  ⊂ , the local algebra A() is generated by the field �̂�(𝑥𝜇) smeared out with
test functions that are supported in the Minkowski coordinate region M ⊂ R4 representing . In other words, the operator �̂� is an
element of A() if there are some functions 𝑓𝑛(𝑥

𝜇
1 ,… , 𝑥𝜇𝑛 ) such that

�̂� =
∑

𝑛 ∫M

𝑑4𝑥1 ⋯∫M

𝑑4𝑥𝑛𝑓𝑛(𝑥
𝜇
1 ,… , 𝑥𝜇𝑛 )�̂�(𝑥

𝜇
1 )⋯ �̂�(𝑥𝜇𝑛 ). (14)

The operator �̂� is said to be localized in  with respect to the AQFT scheme if �̂� is an element of A(). We also define localized
states by means of the notion of preparation over the vacuum |0M⟩. The state |𝜓⟩ is said to be localized in  if it is the result of
local operations on |0M⟩. Explicitly, this means that |𝜓⟩ = �̂�|0M⟩, with �̂� ∈ A().

One of the advantages of the AQFT scheme is the possibility to extend the definition of localized states and observables to curved
spacetimes as well [32]. This fact may have important implications in Quantum Field Theory in Curved Spacetime (QFTCS), which
encompasses physically relevant phenomena, such as the Hawking effect [33], the Unruh effect [34–36] and fluctuations of the
cosmic microwave background [37]. In the algebraic formulation of QFTCS [5,18], local algebras are defined in terms of regions of
the spacetime, independently of the choice of coordinates and the underlying curvature. As already stated above, any observable
�̂� is said to be localized in  if it belongs to the local algebra A(). The localization of states, instead, is affected by the fact that

1 This statement is mathematically imprecise. In AQFT, local algebras are rigorously defined with respect to extended spacetime regions . The algebra A()
5

has to be considered in the limiting case of spacetime regions approximated by point-like events, i.e.,  →  .
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different notions of background vacuums arise from different sets of positive and negative frequency modes associated to different
stationary spacetimes [18]. The Minkowski vacuum state |0M⟩ needs to be generalized to any background state |𝛺⟩ and the notion
of localized states must be given in terms of any background |𝛺⟩. One can then say that the state |𝜓⟩ is localized in  over the
ackground |𝛺⟩ if |𝜓⟩ = �̂�|𝛺⟩ with �̂� as an element of the local algebra A(). Hereafter, for simplicity, we consider flat spacetime
nd we assume that |𝛺⟩ = |0M⟩.

The causality condition in AQFT states that if A and B are spacelike separated regions, the corresponding local algebras
(A) and A(B) mutually commute. The commutativity of A(A) and A(B) imposes statistical independence of measurements in

he spacelike separated regions A and B, in the sense that measurements in A and B do not influence each other. This is known
s the microcausality axiom of AQFT.

The microcausality condition is satisfied by the algebra of Klein–Gordon field �̂�(𝑥𝜇), due to canonical commutation relation
[

�̂�(𝑡, �⃗�), �̂�(𝑡′, �⃗�′)
]

= 𝑖ℏ𝛥KG(𝑡 − 𝑡′, �⃗� − �⃗�′), (15)

ith

𝛥KG(𝑡, �⃗�) = − 𝑖
(2𝜋)3 ∫R3

𝑑3𝑘
2𝜔(�⃗�)

[

𝑒−𝑖𝜔(�⃗�)𝑡+𝑖�⃗�⋅�⃗� − 𝑒𝑖𝜔(�⃗�)𝑡−𝑖�⃗�⋅�⃗�
]

(16)

s the Pauli–Jordan function. From Eqs. (15) and (16), one can prove that [�̂�(𝑡, �⃗�), �̂�(𝑡′, �⃗�′)] = 0 if (𝑡, �⃗�) and (𝑡′, �⃗�′) are spacelike
separated.

The microcausality axiom ensures independence of measurements in spacelike separated regions A and B. However, mea-
surements are not the only types of operations that can be carried out in local experiments. For instance, one may consider local
preparations of states in A and test their influence on B. The independence between preparations in A and measurements in B
are not guaranteed by the microcausality axiom.

The localization program in AQFT is crucially affected by the Reeh–Schlieder theorem [9], which predicts the presence
of nonlocal quantum correlations in the vacuum |0M⟩ [5,12,38]. One of the consequences of the Reeh–Schlieder theorem is
that measurements made in B are able to distinguish the vacuum |0M⟩ from some states |𝜓⟩ localized in A, even if B is
spacelike separated from A. Notwithstanding this apparent incompatibility with causality, it can be shown that the Reeh–Schlieder
nonlocality cannot be used for superluminal signaling [12–15].

The explicit hypotheses and statement of the Reeh–Schlieder theorem will be given in Section 3.1. Conversely, the solution to
the apparent violation of causality will be discussed in Section 3.2.

3.1. Reeh–Schlieder theorem

In this subsection, we show the hypotheses and statement of the Reeh–Schlieder theorem. We discuss the dependency of spacelike
separated operations and the nonlocality of number operators as consequences of the theorem.

The axioms of AQFT in flat spacetime are

1. Microcausality: operators in spacelike separated regions commute, i.e., [�̂�A, �̂�B] = 0 when �̂�A ∈ A(A) and �̂�B ∈ A(B) for
any couple of spacelike separated regions A and B;

2. Isotony: any observable in  can also be measured in a larger region ′, hence, A() ⊂ A(′) if  ⊂ ′;
3. Relativistic covariance: each Poincaré transformation 𝜌 is provided with a unitary representation �̂� (𝜌) such that �̂� (𝜌)A()

�̂�†(𝜌) = A(𝜌()) with the vacuum |0M⟩ as the uniquely invariant state;
4. Spectrum condition: the spectrum of the generators 𝑃 𝜇 of the translation are such that 𝑃 0 ≥ 0 (i.e., the energy is nonnegative)

and (𝑃 0)2 ≥ |𝑃 |
2

(i.e., the spectrum of the energy–momentum is confined to the forward light cone, capturing the notion of
luminal and subluminal propagation of physical effect);

5. Weak Additivity: for any region  ⊆ , A() is the smallest algebra containing ⋃

𝛼𝜇∈R4 A(𝛼), where 𝛼 is the region 
translated by 𝛼𝜇 .

Axioms 3–5 are used to prove the Reeh–Schlieder theorem [5,9]. The theorem states that the vacuum |0M⟩ is cyclic for any local
lgebra A(), in the sense that for any region , for any state |𝜓⟩ and for any 𝜖 > 0, there exist an operator �̂� ∈ A() such that
�̂�|0M⟩− |𝜓⟩ ∥< 𝜖, where ∥ ⋅ ∥ is the norm in the Hilbert space. This means that one can approximate any state of the global Hilbert

pace with arbitrary precision by applying an element of any local algebra A() to the vacuum |0M⟩. Such an effect is the result of
ntangled correlations in the vacuum [5,12,38].

By operating in any bounded spacetime region A, one is able to produce any global state |𝜓⟩ that may, in principle, differ from
0M⟩ in another spacelike separated region B. Even if A and B are not causally connected, the restriction of |𝜓⟩ in A(B) may
e different from the restriction of |0M⟩ in A(B). This result seems to be incompatible with the notion of causality. However, the
ontradiction is resolved by noticing that the nonlocal effect cannot be used for superluminal signaling. A more detailed discussion
ill be provided in Section 3.2.

A corollary to the Reeh–Schlieder theorem is that the vacuum is a separating state in any local algebra A(), in the sense that
or any �̂� ∈ A(), if �̂� annihilates the vacuum (i.e., �̂�|0M⟩ = 0), then �̂� = 0 [12,15]. The consequence is that annihilator operators
annot be localized with respect to the AQFT scheme. Hence, there is no local operator that counts particles inside bounded space
egions. The number operator �̂�() defined by Hegerfeldt and Ruijsenaars [24] is inevitably nonlocal with respect to the AQFT
6

cheme. This also applies to the Newton–Wigner number operator [Eq. (12)].
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3.2. Apparent violation of causality

In Section 3.1, we introduced the apparent violation of causality due to the Reeh–Schlieder theorem. To see the problem in a
hysical scenario, consider two observers, Alice and Bob, which are localized in two spacelike separated regions, A and B. Alice
repares a state |𝜓⟩ = �̂�A|0M⟩ by means of a local operator �̂�A ∈ A(A) acting on the vacuum |0M⟩; whereas Bob performs local
easurements by means of the observable �̂�B ∈ A(B). As a consequence of the Reeh–Schlieder theorem, we find that there are

ome cases in which

⟨𝜓|�̂�B|𝜓⟩ ≠ ⟨0M|�̂�B|0M⟩. (17)

q. (17) implies that the preparation of the local state |𝜓⟩ = �̂�A|0M⟩ in A can be detected by Bob as a result of measurements of
he local observable �̂�B. This seems to be incompatible with the notion of causality since Alice and Bob are spacelike separated.

The problem has been addressed by different authors [12–15] and led to the conclusion that the violation of causality is only
pparent. The solution is given by noticing that a global change of the state is only due to selective operations that cannot be used
or superluminal signaling. This argument will be detailed in the present subsection.

Firstly, notice that Eq. (17) does not hold if �̂�A is unitary. Indeed, by using the unitarity condition �̂�†
A�̂�A = 1 and the microcausal

commutation relation [�̂�A, �̂�B] = 0, we obtain

⟨0M|�̂�†
A�̂�B�̂�A|0M⟩ = ⟨0M|�̂�†

A�̂�A�̂�B|0M⟩ = ⟨0M|�̂�B|0M⟩. (18)

Explicitly, this means that

⟨𝜓|�̂�B|𝜓⟩ = ⟨0M|�̂�B|0M⟩. (19)

By following Knight [10] and Licht [11], we say that the state |𝜓⟩ satisfies the strictly localization property if it gives the same
expectation values as the vacuum for all measurements in the causal complement of A. Equivalently, we say that |𝜓⟩ is strictly
localized in A if Eq. (19) holds for any �̂�B ∈ A(B) and for any region B spacelike separated from A. As a result of Eq. (18), we
know that any local unitary operator �̂�A ∈ A(A) produces a strictly localized state |𝜓⟩ = �̂�A|0M⟩ by acting on the vacuum |0M⟩.

In general, the modification of quantum states due to the interaction with experimental instruments (e.g., emitters) is represented
y a unitary evolution |0M⟩ ↦ �̂�int|0M⟩. However, one can argue that this is not the only way to prepare local states. For instance,
ne can use the following procedure: (i) let the device interact with the vacuum |0M⟩ to unitarily prepare the state �̂�int|0M⟩; (ii)
erform the projective measurement 𝑃𝑖 over a set of subspaces 𝑖 of the global Hilbert space; (iii) reject all the states that are not
lements of (say) 0. In this way, the experimenter is sure that the resulting state is an element of 0. The overall operation is said
o be selective due to the experimenter’s choice of selecting a subensemble after the measurement.

In this scenario, the preparation of the state in A affects observations in the spacelike separated region B. To see this, consider
local observable �̂�B ∈ A(B) and assume that �̂�int ∈ A(A) and 𝑃0 ∈ A(A). The normalized state after the preparation is
𝜓⟩ = �̂�A|0M⟩, with

�̂�A =
𝑃0�̂�int

√

⟨0M|�̂�†
int𝑃0�̂�int|0M⟩

(20)

as a local operator in A. The mean value of �̂�B is

⟨𝜓|�̂�B|𝜓⟩ =
⟨0M|�̂�†

int𝑃0�̂�int�̂�B|0M⟩

⟨0M|�̂�†
int𝑃0�̂�int|0M⟩

, (21)

hich is different from ⟨0M|�̂�B|0M⟩. Hence, in this scenario, Eq. (17) holds and the state |𝜓⟩ is not strictly localized in A. Notice
that the inequality 𝑃0 ≠ 1 is crucial for the proof of Eq. (17).2

We found that only nonselective local operations in A do not change the vacuum in the causal complement of A. Conversely,
he Reeh–Schlieder nonlocal effect and the consequent apparent violation of causality occur when the state is prepared by means

2 The results of Eqs. (18) and (21) can be extended to the case of general quantum operations with local Kraus operators �̂�𝑖 ∈ A(A) [13,14,39]. The
statistical operator describing the state after the operation is

�̂� =
∑

𝑖 �̂�𝑖|0M⟩⟨0M|�̂�†
𝑖

∑

𝑖⟨0M|�̂�†
𝑖 �̂�𝑖|0M⟩

. (22)

The operation is said to be nonselective only when
∑

𝑖
�̂�†
𝑖 �̂�𝑖 = 1. (23)

By using the cyclicity of the trace and the commutation relation between �̂�𝑖 ∈ A(A) and �̂� ∈ A(B), one can prove that

Tr(�̂��̂�) =
∑

𝑖 Tr(�̂�†
𝑖 �̂�𝑖|0M⟩⟨0M|�̂�)

∑

𝑖⟨0M|�̂�†
𝑖 �̂�𝑖|0M⟩

. (24)

The right hand side of Eq. (24) is equal to Tr(|0 ⟩⟨0 |�̂�) if and only if the Kraus operators satisfy Eq. (23).
7
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Fig. 1. Local preparation of states by Alice and local measurement of observables by Bob in two different regions of space. In (a) the preparation of the state
is carried out by means of nonselective operations (e.g., via unitary operators) on the vacuum |0M⟩. In this scenario, Bob locally observes the vacuum |0M⟩ as

result of his measurements. In (b) the state is prepared via selective operations (e.g., via projective measurements). Due to the quantum correlations in the
acuum |0M⟩, the outcomes of Bob’s measurements are affected by the preparation of the state. Such a nonlocal effect cannot be used for superluminal signaling.

f selective operations on |0M⟩. In Fig. 1, we depict this result by considering the experimenters Alice and Bob carrying out local
perations in two distinct regions of space.

The defining feature of selective operations is the experimenter’s decision to only consider the subspace 0 and reject all states
hat give negative results in measuring the effect 𝑃0. Crucially, the outcomes of the projective measurements are random and only
he observer knows when the state has been successfully prepared. This information can only be shared by means of a classical
ommunication. Hence, causality is not violated.

To see that selective operations cannot be used for superluminal signaling, consider again the two experimenters, Alice and Bob,
ocalized in two spacelike separated regions A and B. Alice performs a selective operation in A to prepare a state, whereas
ob measures the observable �̂� ∈ A(B) in B. In order to prepare the desired state, Alice repeats the operation multiple times
nd excludes the cases in which the outcome of her selective measurements are unsuccessful, i.e., when the desired state has not
een successfully prepared. At this point, Alice is biased, as she knows which operation was successful and which was not. Bob, in
rinciple, is ignorant about the outcome of Alice’s operations and, hence, does not know when to perform the measurement with
he correct state. He can only acquire this information in two possible ways: (i) by performing Alice’s projective measurement to
erify if the state is the correct one; however this is only possible if Bob has access to Alice’s algebra and, hence, if they are not
pacelike separated; (ii) by letting Alice share her information via classical communication, which follows relativistic causality and
orbids superluminal signaling.

To connect with the literature, we agree with Clifton and Halvorson [13] and with Valente [14] who recognized that the
roblematic operations are selective. However, we give a different argument on why no violation of causality occurs even in the
ase of selective operations. For Clifton and Halvorson [13], these operations do not retain full physical meaning, but are partly
ffected by the purely conceptual operation of selecting subensembles. In other words, the selective component of the operation is
egarded as mathematical and nonphysical. This leads to the interpretation of quantum states as partly epistemic entities, where
ach update of state after a measurement only represents a change of knowledge of the experimenter based on the outcome of
he measurement. Conversely, Valente [14] avoided any interpretation of states, while giving arguments to support the thesis that
uperluminal signaling of selective operations cannot be controlled. We also showed how these operations cannot be used to instantly
end information to another experimenter; however, we used a different argument.

Our approach is inspired by the quantum teleportation technique [40], where a maximally entangled state is used to teleport a
uantum state. In that case, no violation of causality occurs because a classical channel has to be employed to transmit information
bout the outcomes of Alice’s measurement. This is in complete analogy with the scenario of the Reeh–Schlieder apparent paradox
8
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described here. Hence, we used the argument that the nonlocal correlations due to entanglement is compatible with the prohibitions
of superluminal causation. The QFT admits correlations between spacelike separated regions [41,42] while causality is not violated.

The result is also directly connected to the EPR experiment [13,43], where nonlocal quantum correlations are used to globally
hange a state via local measurements. The wave function collapse in the EPR scenario cannot be exploited to instantly send
nformation to another experimenter. Equivalently, in the Reeh–Schlieder scenario, one uses the vacuum correlations to produce a
onlocal effect, which, however, does not lead to superluminal signaling.

. Modal scheme

In the familiar formulation of QFT in Minkowski spacetime [18], single particle states are represented as positive frequency
odes of the Klein–Gordon equation

[

𝜂𝜇𝜈𝜕𝜇𝜕𝜈 −
(𝑚𝑐
ℏ

)2
]

�̂�(𝑡, �⃗�) = 0. (25)

Specifically, states with defined momentum |�⃗�⟩ are represented by the free modes

𝑓 (�⃗�, 𝑡, �⃗�) =
√

ℏ
(2𝜋)32𝜔(�⃗�)

𝑒−𝑖𝜔(�⃗�)𝑡+𝑖�⃗�⋅�⃗�, (26)

which are positive frequency solutions of Eq. (25) satisfying the orthonormality condition

(𝑓 (�⃗�), 𝑓 (�⃗�′))KG = 𝛿3(�⃗� − �⃗�′), (27a)

(𝑓 ∗(�⃗�), 𝑓 ∗(�⃗�′))KG = −𝛿3(�⃗� − �⃗�′), (27b)

(𝑓 (�⃗�), 𝑓 ∗(�⃗�′))KG = 0. (27c)

Here,

(𝜙, 𝜙′)KG = 𝑖
ℏ ∫R3

𝑑3𝑥
[

𝜙∗(𝑡, �⃗�)𝜕0𝜙′(𝑡, �⃗�) − 𝜙′(𝑡, �⃗�)𝜕0𝜙∗(𝑡, �⃗�)
]

(28)

is the Klein–Gordon product of the couple of modes 𝜙(𝑡, �⃗�) and 𝜙′(𝑡, �⃗�). The scalar field �̂�(𝑡, �⃗�) decomposes into the modes 𝑓 (�⃗�, 𝑡, �⃗�)
and 𝑓 ∗(�⃗�, 𝑡, �⃗�) as

�̂�(𝑡, �⃗�) = ∫R3
𝑑3𝑘

[

𝑓 (�⃗�, 𝑡, �⃗�)�̂�(�⃗�) + 𝑓 ∗(�⃗�, 𝑡, �⃗�)�̂�†(�⃗�)
]

, (29)

where �̂�(�⃗�) is the annihilator of the single particle with momentum �⃗�.
The modal representation of |�⃗�⟩ can be extended to any Minkowski–Fock state |𝜓⟩ ∈ M by using the decomposition

|𝜓⟩ =
∞
∑

𝑛=1

1
√

𝑛! ∫R3𝑛
𝑑3𝑛𝐤𝑛�̃�𝑛(𝐤𝑛)

𝑛
∏

𝑙=1
�̂�†(�⃗�𝑙)|0M⟩ + �̃�0|0M⟩. (30)

Here, 𝐤𝑛 = (�⃗�1,… , �⃗�𝑛) is a 3𝑛 vector collecting 𝑛 momenta and �̃�𝑛(𝐤𝑛) is the symmetrized 𝑛-particles wave function of |𝜓⟩ in the
momentum representation. The modal representative of |𝜓⟩ is defined as

𝜓𝑛(𝑡, 𝐱𝑛) =
(

2𝑚𝑐2

ℏ2

)𝑛∕2

∫R3𝑛
𝑑3𝑛𝐤𝑛�̃�𝑛(𝐤𝑛)

𝑛
∏

𝑙=1
𝑓 (�⃗�𝑙 , 𝑡, �⃗�𝑙), (31)

where 𝐱𝑛 = (�⃗�1,… , �⃗�𝑛). To not get confused with the notation of Section 2, we say that 𝜓NW(𝑡, �⃗�) is a Newton–Wigner wave function
and 𝜓𝑛(𝑡, 𝐱𝑛) is a modal wave function.

It can be argued that 𝜓𝑛(𝑡, 𝐱𝑛) does not entail any genuine notion of localization in QFT. In particular, one can refer to the
superluminal spreading of the modal wave function 𝜓𝑛(𝑡, 𝐱𝑛) to claim that the modal scheme is not suited for the description of
localized relativistic states. Such an instantaneous spreading can be proven by noticing that 𝜓𝑛(𝑡, 𝐱𝑛) is a linear combination of
products of positive frequency modes. Hence, if the support of 𝜓𝑛(𝑡, 𝐱𝑛) is compact at a fixed time 𝑡, then its time derivative 𝜕0𝜓𝑛(𝑡, 𝐱𝑛)
is not compactly supported at the same time 𝑡 [27]. Consequently, the modal wave function instantly develops infinite tails.

In QFT, the function 𝜓𝑛(𝑡, 𝐱𝑛) cannot be associated to the probability to find the 𝑛 particles in 𝐱𝑛 = (�⃗�1,… , �⃗�𝑛). However, this is not
true in the NRQM. In Sections 6.3 and 6.4, we will show that both the AQFT and the modal scheme converge to the same localization
scheme when states and observables are restricted to the nonrelativistic regime. This means that the modal wave functions acquire
a genuine notion of localization only in the nonrelativistic limit.

In the remaining part of this section, we formulate the modal localization scheme in terms of localized states and observables.
By definition, the state |𝜓⟩ is said to be localized in a volume  at time 𝑡 with respect to the modal scheme if the support of 𝜓𝑛(𝑡, 𝐱𝑛)
is in 𝑛, in the sense that 𝜓𝑛(𝑡, 𝐱𝑛) = 0 when there is an 𝑙 ∈ {1,… , 𝑛} such that �⃗�𝑙 ∉  .

We now show that there is a natural definition of localized operators based on the localization of states with respect to the modal
scheme. We start by considering the Minkowski–Fock state

†

9

|𝜓⟩ = �̂�mod[𝜓]|0M⟩, (32)
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Table 1
Summary table of the differences between the Newton–Wigner, the AQFT and the modal localization schemes.

Newton–Wigner scheme AQFT scheme Modal scheme

Relativistic covariance and
causality hold

No Yes No

The variable �⃗� is a genuine
position coordinate

No Yes Yes

Operators in disjoint spatial
regions commute

Yes Yes No

States in disjoint spatial regions
are orthogonal

Yes No No

The global Hilbert space
factorizes into local Hilbert
spaces: M =

⨂

𝑖 M(𝑖)

Yes Yes No

The global vacuum |0M⟩ is
entangled across the local Hilbert
spaces M(𝑖)

No Yes –

The local Hilbert spaces M(𝑖)
are Fock spaces with local vacua
|0M(𝑖)⟩

Yes No –

The global vacuum factorizes into
the local vacua: |0M⟩ =

⨂

𝑖|0M(𝑖)⟩
Yes – –

Localized states live in local
Hilbert spaces [Eq. (42)]

Yes – –

The strict localization property
[Eq. (19)] at 𝑡 = 0 is guaranteed

Yes Only for local nonselective preparations No

with

�̂�†mod[𝜓] =
∞
∑

𝑛=1

1
√

𝑛! ∫R3𝑛
𝑑3𝑛𝐤𝑛�̃�𝑛(𝐤𝑛)

𝑛
∏

𝑙=1
�̂�†(�⃗�𝑙) + �̃�0. (33)

The identity relating �̃�𝑛(𝐤𝑛) to 𝜓𝑛(𝑡, 𝐱𝑛) is Eq. (31), which can be inverted by means of a Fourier transform as

�̃�𝑛(𝐤𝑛) =
[

ℏ
(2𝜋)3𝑚𝑐2

]𝑛∕2

∫R3𝑛
𝑑3𝑛𝐱𝑛𝜓𝑛(0, 𝐱𝑛)

𝑛
∏

𝑙=1

[√

𝜔(�⃗�𝑙)𝑒−𝑖�⃗�𝑙 ⋅�⃗�𝑙
]

. (34)

Eq. (34) can be plugged in Eq. (33) to obtain

�̂�†mod[𝜓] =
∞
∑

𝑛=0

1
√

𝑛! ∫R3𝑛
𝑑3𝑛𝐱𝑛𝜓𝑛(0, 𝐱𝑛)

𝑛
∏

𝑙=1
�̂�†mod(�⃗�𝑙), (35)

with

�̂�mod(�⃗�) = ∫R3
𝑑3𝑘

√

ℏ𝜔(�⃗�)
(2𝜋)3𝑚𝑐2

𝑒𝑖�⃗�⋅�⃗��̂�(�⃗�). (36)

For each �⃗� we indicate the algebra generated by the operator �̂�mod(�⃗�) and its adjoint as Amod
M (�⃗�). For extended regions of space

 ⊆ R3, we define Amod
M () as the algebra generated by the operators �̂�mod(�⃗�) with �⃗� ∈  . By using Eq. (35) and the definition of

ocalized states with respect to the modal scheme, we find that �̂�†mod[𝜓] is an element of Amod
M (), with  as the region in which

he state |𝜓⟩ = �̂�†mod[𝜓]|0M⟩ is localized at 𝑡 = 0. This naturally leads to the definition of local operators as elements of Amod
M () and

he identification of Amod
M () as a local algebra with respect to the modal scheme.

Notice that, due to the invertibility of Eq. (36), any operator �̂� acting on the Minkowski–Fock space M admits a region  ⊆ R3

such that �̂� ∈ Amod
M (). If, in particular,  = R3, then the operator is said to be global (i.e., nonlocal) with respect to the modal

scheme.

5. Comparison between localization schemes

In the previous sections, we introduced three different localization schemes in QFT. Here, we compare them and we detail the
10

relevant differences. A summary of the discussion can be found in Table 1.
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5.1. Newton-Wigner and AQFT scheme

5.1.1. Fundamental differences
There are significant conceptual differences between the Newton–Wigner localization and the AQFT localization schemes. The

ormer is based on the orthogonality between states localized in different regions and leads to frame-dependent (i.e., noncovariant)
eatures and superluminal phenomena. Conversely, the AQFT localization scheme is causal and covariant and, hence, it is regarded
s fundamental in nature. In particular, the commutativity of fields in spacelike separated regions guarantees the independence
f measurements. Furthermore, if a state is localized in one region  of space at 𝑡 = 0, there is no mean by which one can
nstantaneously send information outside the light cone of  .

In the Newton–Wigner scheme, the variable �⃗� appears as a result of second-quantizing the position operator ̂⃗𝑥NW. Conversely,
in the AQFT scheme, the variable �⃗� is associated the coordinate system representing the underlying spacetime and, hence, entails a
genuine notion of localization.

Other differences between the Newton–Wigner and the AQFT schemes can be obtained by considering the respective local
algebras ANW

M () and A(). However, notice that  is a subset of R3, whereas  is a region of the spacetime . Hence, a direct
comparison between the two schemes can only be made if we restrict  to a space region at 𝑡 = 0. This is possible due to the
dynamical structure of the field �̂�(𝑥𝜇). Indeed, as a consequence of the Klein–Gordon equation (25) and the hyperbolic nature of
the spacetime, any region  admits a minimally extended Cauchy region  ⊆ R3 inside the hypersurface 𝑡 = 0 such that the field
operators �̂�(𝑥𝜇) inside  can be written in terms of field operator �̂�(𝑥𝜇) and its conjugate momentum field �̂�(𝑥𝜇) = −𝜕0�̂�(𝑥𝜇) inside
. Explicitly, this means that A() ⊆ AAQFT

M (), where AAQFT
M () is the algebra generated by the field operators �̂�(0, �⃗�) and �̂�(0, �⃗�)

ith varying �⃗� ∈  . We also define the local algebra in a space point AAQFT
M (�⃗�) as the one generated by the fields �̂�(0, �⃗�) and �̂�(0, �⃗�)

ith fixed �⃗�. The Newton–Wigner and the AQFT localization schemes can now be directly compared by means of the algebras
NW
M () and AAQFT

M (), or, equivalently, by means of ANW
M (�⃗�) and AAQFT

M (�⃗�).
By comparing the algebras ANW

M (�⃗�) and AAQFT
M (�⃗�), one can notice that the two notions of locality are not compatible, in the sense

hat if an operator is Newton–Wigner localized in �⃗�, it cannot be localized with respect to the AQFT scheme as well. Explicitly, we
re saying that ANW

M (�⃗�) ≠ AAQFT
M (�⃗�).

This can be proved by reminding that operators in ANW
M (�⃗�) are generated by the Newton–Wigner annihilation operator �̂�NW(�⃗�) and

ts adjoint, whereas the algebra AAQFT
M (�⃗�) is generated by the field operators �̂�(0, �⃗�) and �̂�(0, �⃗�) = −𝜕0�̂�(𝑡, �⃗�)|𝑡=0. By using Eqs. (29),

26) and (11), we obtain

�̂�NW(�⃗�) = ∫R3
𝑑3𝑥′

[

𝑓�̂�↦NW(�⃗� − �⃗�′)�̂�(0, �⃗�′) + 𝑓�̂�↦NW(�⃗� − �⃗�′)�̂�(0, �⃗�′)
]

, (37)

ith

𝑓�̂�↦NW(�⃗�) = ∫R3
𝑑3𝑘

√

𝜔(�⃗�)𝑒𝑖�⃗�⋅�⃗�
√

2ℏ(2𝜋)3
, 𝑓�̂�↦NW(�⃗�) = ∫R3

𝑑3𝑘 −𝑖𝑒𝑖�⃗�⋅�⃗�
√

2ℏ𝜔(�⃗�)(2𝜋)3
. (38)

rom Eq. (38), it is possible to notice that 𝑓�̂�↦NW(�⃗�) and 𝑓�̂�↦NW(�⃗�) are supported in the whole space R3. Consequently, the right hand
ide of Eq. (37) is nonlocal with respect to the AQFT scheme. This means that �̂�NW(�⃗�) ∉ AAQFT

M (�⃗�) and, hence, ANW
M (�⃗�) ≠ AAQFT

M (�⃗�).

.1.2. Local particle content
An important difference between the two schemes is given by the notion of the vacuum as locally and globally devoid of

uanta [44]. The Newton–Wigner operators �̂�NW(�⃗�) [Eq. (11)] annihilate the vacuum, i.e., �̂�NW(�⃗�)|0M⟩ = 0, and can be used to define
local number density operator �̂�() [Eq. (12)]. Conversely, the corollary of the Reeh–Schlieder theorem forbids the definition

f such an operator in the AQFT localization scheme [12,15]. In that case, the vacuum is not locally devoid of quanta, but only
lobally.

Notice that the Newton–Wigner operators �̂�NW(�⃗�) satisfy the canonical commutation identity

[�̂�NW(�⃗�), �̂�†NW(�⃗�′)] = 𝛿3(�⃗� − �⃗�′), [�̂�NW(�⃗�), �̂�NW(�⃗�′)] = 0. (39)

ence, �̂�NW(�⃗�) can be interpreted as a local annihilation operator in the Newton–Wigner scheme. Conversely, due to the corollary
f the Reeh–Schlieder theorem, local creation and annihilation operators do not exist in the AQFT scheme [12,15].

The existence of local creation and annihilation operators in the Newton–Wigner scheme ensures that the global Fock space
actorized into local Fock spaces M =

⨂

𝑖NW
M (𝑖), where {𝑖} is any partition of R3. The vacuum of each Fock space NW

M (𝑖)
ill be denoted as |0NW

M (𝑖)⟩ and is defined by �̂�NW(�⃗�)|0NW
M (𝑖)⟩ = 0, for any �⃗� ∈ 𝑖. From the definition of |0NW

M (𝑖)⟩ and the fact
hat the Minkowski vacuum |0M⟩ is always annihilated by �̂�NW(�⃗�), we find that |0M⟩ is equal to the product state of the local vacua,
.e., |0M⟩ =

⨂

𝑖|0M(𝑖)⟩, and, hence, it is not entangled across the local Hilbert spaces NW
M (𝑖).

In the AQFT scheme, the global Hilbert space M can be factorized by means of the local field operators �̂�(0, �⃗�) and �̂�(0, �⃗�) and
heir equal-time commutation relations

[

�̂�(𝑡, �⃗�), �̂�(𝑡, �⃗�′)
]

= 𝑖ℏ𝛿3(�⃗� − �⃗�′), (40a)
[

�̂�(𝑡, �⃗�), �̂�(𝑡, �⃗�′)
]

=
[

�̂�(𝑡, �⃗�), �̂�(𝑡, �⃗�′)
]

= 0, (40b)
11
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which lead to M =
⨂

𝑖
AQFT
M (𝑖).3 However, a factorization of M into local Fock space is not possible, due to the nonexistence

of local creators and annihilators. Consequently, the local Hilbert spaces AQFT
M (𝑖) cannot be Fock spaces and the global vacuum

0M⟩ cannot factorize into local vacua. More precisely, |0M⟩ does not factorize into any set of local states, since it is entangled across
he local Hilbert spaces AAQFT

M (𝑖) [5,12,38].

.1.3. Independence via tensor product of local Hilbert spaces and algebras
In quantum physics, the independence of physical phenomena is represented by the factorization of states and observables. In

he usual prescription, two distinct laboratories, A and B, are supplied with their own Hilbert space A and B, the respective
xperimenters prepare the states |𝜓A⟩ ∈ A and |𝜓B⟩ ∈ B and perform the measurement of the observable �̂�A and �̂�B. The global

Hilbert space, state and observable are the respective tensor product A ⊗B, |𝜓A⟩⊗ |𝜓B⟩ and �̂�A ⊗ �̂�B.
A similar factorization also occurs in the Newton–Wigner and the AQFT schemes. In particular, the global Hilbert space factorizes

into local Hilbert spaces, i.e., M =
⨂

𝑖M(𝑖). Hence, the two laboratories A and B can be represented by local fields in the
respective regions A and B. Here, we use a unifying notation for both schemes by indicating local Hilbert spaces as M(𝑖).
Depending on the circumstances, if we are referring to the Newton–Wigner scheme, then M(𝑖) = NW

M (); conversely, for the
QFT scheme, M(𝑖) = AQFT

M ().
The factorization of M into M(A)⊗M(B)⊗⋯ allows experimenters in A and B to independently prepare and measure

states in their own bounded regions. The fact that the experimenter in A is able to perform measurements independently from B
s made possible by local operators in A which act as an identity on (B).

We remark that the only preparations in A that are guaranteed to not affect measurements in B are nonselective. Notwith-
tanding the factorization M = M(A) ⊗ M(B) ⊗⋯, selective operations may still lead to nonlocal effects as a consequence
f the nonunitary state update. The problem has been discussed in Section 3.2 for the case of the AQFT scheme. In particular, we
howed that the strict localization property of states is not always satisfied as a result of the Reeh–Schlieder theorem.

Below, we will demonstrate that the Newton–Wigner scheme is not affected by these nonlocal effects. In particular, we will
how that in the Newton–Wigner scheme the strict localization property is always satisfied and, hence, local measurements in B
re independent of selective preparations of states in A.

.1.4. Intrinsic notion of localization
Due to the factorization of the global Fock state M =

⨂

𝑖NW
M (𝑖) and the global vacuum |0M⟩ =

⨂

𝑖|0M(𝑖)⟩ in the
ewton–Wigner scheme, we find that any state that is localized in  can be written as

|𝜓⟩ = �̂�|0M()⟩⊗

[

⨂

𝑖
|0M(𝑖)⟩

]

, (42)

here, in this case, {𝑖} is a partition of R3 ⧵  and �̂� is an operator acting on NW
M (). The same factorization does not occur for

ocalized states in the AQFT scheme, because the global vacuum does not factorize in M =
⨂

𝑖
AQFT
M (𝑖).

Eq. (42) gives a definition of localized states in terms of a local Hilbert space NW
M () as the domain of the state. Intuitively,

e say that the state |𝜓⟩ lives in NW
M (), while it appears indistinguishable from the vacuum outside the region  . Such a notion

f localization can be compared to the one provided in Section 2.2 by means of local operators �̂� ∈ ANW
M () acting on the vacuum

0M⟩. The physical interpretation was that the local state is the result of local operations occurring in  over the vacuum background
0M⟩. Conversely, Eq. (42) gives a notion of localization that is independent of the preparation of the state.

The intrinsic notion of localization provided by Eq. (42) is missing in the AQFT scheme, which can therefore only rely on the
nterpretation of localized states in terms of local preparations over the vacuum |0M⟩. In that case, the local state |𝜓⟩ = �̂�|0M⟩ with
̂ ∈ AAQFT

M () cannot be said to live inside the local Hilbert space AQFT
M ().

3 We remark that the factorization M =
⨂

𝑖 
AQFT
M (𝑖) is not mathematically precise and can be considered valid only in some sort of limit. In particular, in

he rigorous context of AQFT, the microcausality condition does not guarantee the factorization of the global algebra into the local algebras A =
⨂

𝑖 A
AQFT
M (𝑖).

However, a weaker version of A =
⨂

𝑖 A
AQFT
M (𝑖) can be found in those theories that satisfy the so-called split property [45]. The assumption is that for any

ouple of spacetime regions  and ′ ⊃  there is a type I von Neumann algebra R such that A() ⊂ R ⊂ A(′). The split property has been proven in a
ariety of models, including free massive scalar field [46], Dirac, Maxwell, free massless scalar fields [47] and free massive fermion fields [48].
A weak notion of independence via tensor product of local Hilbert spaces and algebras is present in quantum field theories with split property [7]. In particular,

or any regions A, ′
A and B such that A ⊂ ′

A and B is spacelike separated from ′
A, the following isomorphism holds

A(A) ∨A(B) ≅ A(A)⊗A(B), (41)
here the left-hand side is the algebra generated by sums and products of elements in A(A) and A(B) and the right-hand side is the spatial tensor product
f the algebras.
The notion of independence via tensor product is weak because one can consider any ′

A arbitrarily close to A, but never equal. In other words, the region
′

A ensures that A and B do not touch at their border; however, one can consider the limiting case in which the two regions A and B are arbitrary close.
Hence, the factorization A =

⨂

AAQFT( ) can only by formalized in such a limit.
12
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5.1.5. Strict localization property and Alice–Bob scenario
As a consequence of Eq. (42) the strict localization property is always satisfied in the Newton–Wigner scheme, in the sense that

ny state |𝜓⟩ localized in A with respect to the Newton–Wigner scheme always appears indistinguishable from the vacuum |0M⟩

in any other separated region B. Explicitly this means that for any |𝜓⟩ = �̂�A|0M⟩, with �̂�A ∈ ANW
M (A), and for any observable

̂B ∈ ANW
M (B), Eq. (19) holds. The proof comes from the factorization of |𝜓⟩ and �̂�B in M = NW

M (A)⊗NW
M (B)⊗… and from

he normalization condition 1 = ⟨𝜓|𝜓⟩ = ⟨0M(A)|�̂�
†
A�̂�A|0M(A)⟩.

The result may be understood in terms of the Alice–Bob scenario presented in Section 3.2 for the AQFT scheme. An experimenter
Alice) prepares a state over the vacuum |0M⟩ by means of local Newton–Wigner operators �̂�NW(�⃗�) ∈ ANW

M (A). Another experimenter
Bob) performs measurements in a separated region by means of local Newton–Wigner operators �̂�NW(�⃗�) ∈ ANW

M (B). From Eq. (19),
e deduce that the outcomes of Bob’s measurements are independent of the preparation of the state by Alice.

Hereafter, we will refer to this scenario as the Newton–Wigner Alice–Bob experiment to not get confused with AQFT Alice–Bob
xperiment presented in Section 3.2. The discussion of Section 3.2 led to the conclusion that not all the states that are localized
ith respect to the AQFT scheme are also strictly localized, at variance with the Newton–Wigner scheme.

The two Alice–Bob scenarios lead to different results. One may ask which one would be applicable in real experiments. We have
lready remarked that the AQFT localization scheme is fundamental and entails causal processes. Hence, we may be prone to consider
he AQFT Alice–Bob experiment as the most relevant one, while the Newton–Wigner Alice–Bob scenario should not be understood as
aving a genuine notion of localization. The processes considered in the Newton–Wigner case are physically realizable, in the sense
hat the state prepared by Alice and the observable used by Bob exist; however, they can hardly be interpreted as genuinely local.
f, for instance, Alice uses an emitter to produce the state over the vacuum, the correct way to describe the QFT interaction between
he device and the field is by means of local unitary evolution, with the AQFT notion of localization. This would motivate the idea
f considering the AQFT Alice–Bob scenario as the one genuinely describing two macroscopic experimenter living in disjoint regions
f space.

.1.6. Orthogonality condition
By means of Eq. (37) we found that the Newton–Wigner and the AQFT schemes are incompatible. This seems to contradict the

dea of generality advocated by Newton and Wigner [1]: the two authors only considered a minimal set of physically motivated
ostulates to define the notion of localization in RQM.

At least one of the postulates for the Newton–Wigner localization must have been ignored in the AQFT scheme. The missing
ssumption is the orthogonality of states in different spatial positions. To see this, consider the states |𝜓A⟩ = �̂�(0, �⃗�A)|0M⟩ ∈ AAQFT

M (�⃗�A)
nd |𝜓B⟩ = �̂�(0, �⃗�B)|0M⟩ ∈ AAQFT

M (�⃗�B), which are respectively localized in �⃗�A and �⃗�B according to the AQFT scheme. Assume that
he two points are different, �⃗�A ≠ �⃗�B, and, hence, the states are localized in disjoint regions. By following Newton and Wigner’s
ssumptions, one would expect that ⟨𝜓A|𝜓B⟩ = 0; however, this is not true. The inequality ⟨𝜓A|𝜓B⟩ ≠ 0 can be checked by computing
he 2-point correlation function

⟨0M|�̂�(0, �⃗�A)�̂�(0, �⃗�B)|0M⟩ = ℏ
(2𝜋)3 ∫R3

𝑑3𝑘 𝑒
𝑖�⃗�⋅(�⃗�A−�⃗�B)

2𝜔(�⃗�)
, (43)

which is different form zero.
We recognize that the orthogonality condition is not met by the AQFT localization. Consequently, the probability transition

associated to the two spatially separated states |⟨𝜓A|𝜓B⟩|
2 is different form zero. The result is apparently paradoxical, as it seems

that there is a nonvanishing probability for a local state to be found in another disjoint region [44]. The paradox is resolved if we
assume that in AQFT the definition of localized states can only be given in terms of local preparations over the vacuum |0M⟩.

At the beginning of Section 3, we said that |𝜓⟩ is a localized state with respect to the AQFT scheme if it is the result of local
operations on |0M⟩. The same definition was also provided for the Newton–Wigner scheme in Section 2.2. Then, we found that an
intrinsic notion of localization naturally occurs due to Eq. (42), which provides a definition of localized states as elements of the
local algebras NW

M (). This notion of localization only appears in the Newton–Wigner scheme. Conversely, in the AQFT scheme,
Eq. (42) does not hold because local vacuum states do not exist; hence, the definition of localized states can only be provided in
terms of local preparations over the vacuum |0M⟩.

The quantity |⟨𝜓A|𝜓B⟩|
2 should be interpreted as the probability for a state locally prepared in �⃗�A to turn into a state that can be

locally prepared in �⃗�B. The fact that ⟨𝜓A|𝜓B⟩ is different from zero implies that |𝜓B⟩ can be obtained as an outcome of the projective
measurement |𝜓B⟩⟨𝜓B| on |𝜓A⟩, i.e., |𝜓B⟩ ∝ |𝜓B⟩⟨𝜓B|𝜓A⟩. This means that |𝜓B⟩ may be prepared in both of the following ways: either
(i) via local operation �̂�(0, �⃗�B) on |0M⟩ in �⃗�B or (ii) via local operation �̂�(0, �⃗�A) on |0M⟩ in �⃗�A followed by the projective measurement
|𝜓B⟩⟨𝜓B|. The apparent paradox comes from the unexpected compatibility between (i) and (ii) notwithstanding the fact that �⃗�A and
⃗B are different points. However, notice that the operator |𝜓B⟩⟨𝜓B| is nonlocal, i.e., |𝜓B⟩⟨𝜓B| ∉ AAQFT

M (�⃗�B). Due to the nonlocality of
the projective operation, one should not be surprised by the compatibility between (i) and (ii).

5.2. Newton-Wigner and modal scheme

In this subsection, we detail the differences between the Newton–Wigner and the modal scheme.
As remarked in Section 5.1, the variable �⃗� in the Newton–Wigner scheme is not a space coordinate and, hence, it does not entail

any genuine notion of position. Conversely, in the modal scheme, �⃗� appears as a space coordinate for the positive frequency modes
13
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𝑓 (�⃗�, 𝑡, �⃗�) that are solutions of the Klein–Gordon Eq. (25). The representatives 𝑓 (�⃗�, 𝑡, �⃗�) inherit the fundamental notion of spacetime
event (𝑡, �⃗�) from the QFT framework. Hence, in analogy to the AQFT scheme, we say that the variable �⃗� entails a genuine notion of
position.

A feature that both localization schemes share is the acausal spreading of the wave functions, which was discussed in Sections 2
and 4. In particular, the superluminal effect in the Newton–Wigner is a result of the Hegerfeldt theorem [Section 2.3], which is
a no-go theorem for localization schemes that simultaneously satisfy (i) causality, (ii) positivity of energy and (iii) orthogonality
condition for states in disjoint spatial regions. The acausal spreading of the modal wave functions 𝜓𝑛(𝑡, 𝐱𝑛), instead, was proved in
ection 4 by means of the non-localizability of positive frequency modes for finite intervals of time. The Hegerfeldt theorem cannot
e applied in this case because the assumption (iii) is missing.

The lack of assumption (iii) can be proved by considering two single particle states |𝜓A⟩ = �̂�†mod(�⃗�A)|0M⟩ and |𝜓B⟩ = �̂�†mod(�⃗�B)|0M⟩

espectively localized in �⃗�A and �⃗�B. By using Eq. (36) and the commutation relations (9), we obtain

⟨𝜓A|𝜓B⟩ = ∫R3
𝑑3𝑘

ℏ𝜔(�⃗�)
𝑚𝑐2

𝑒𝑖�⃗�⋅(�⃗�A−𝑥B)

(2𝜋)3
, (44)

hich means that ⟨𝜓A|𝜓B⟩ different from zero even if �⃗�A ≠ �⃗�B. At variance with the Newton–Wigner scheme, the modal scheme
dmits non-orthogonal states that are localized in disjoint spatial regions.

By using again Eq. (36) and the commutation relations (9) one can also prove that

[�̂�mod(�⃗�), �̂�
†
mod(�⃗�

′)] = ∫R3
𝑑3𝑘

ℏ𝜔(�⃗�)
𝑚𝑐2

𝑒𝑖�⃗�⋅(�⃗�−�⃗�′)

(2𝜋)3
, (45a)

[�̂�mod(�⃗�), �̂�mod(�⃗�′)] = 0. (45b)

Eq. (45a) implies that the modal operators �̂�mod(�⃗�) and �̂�†mod(�⃗�) cannot be interpreted as local annihilation and creation operators,
at variance with the Newton–Wigner operators �̂�NW(�⃗�) and �̂�†NW(�⃗�). It also implies that operators localized in disjoint spatial regions
generally do not commute. Explicitly, this means that there are operators �̂�A ∈ Amod

M (�⃗�A) and �̂�B ∈ Amod
M (�⃗�B) such that

[�̂�A, �̂�B] ≠ 0, (46)

even if �⃗�A ≠ �⃗�B.
As a consequence of Eq. (46), the global Hilbert space does not factorize into local Hilbert spaces. This means that the modal

localization scheme lacks of the notion of independence via tensor product of local Hilbert spaces. Also, local Fock spaces do not exist
and the global vacuum cannot factorize into local vacua, since local Hilbert spaces are nonexistent in the first place. Consequently,
the strict localization property is not guaranteed in the modal scheme, at variance with the Newton–Wigner scheme.

All of these differences show that the two localization schemes are incompatible. More generally, it is possible to demonstrate
that any operator or state that is localized with respect to one scheme it is not localized with respect to the other. The proof is similar
to the one provided in the previous subsection for the Newton–Wigner and the AQFT scheme. Consider the operators �̂�mod(�⃗�) and
̂NW(�⃗�), which generate the respective local algebras Amod

M (�⃗�) and ANW
M (�⃗�). Use their definitions [Eqs. (11) and (36)] to compute

�̂�mod(�⃗�) = ∫R3
𝑑3𝑥′𝑓NW↦mod(�⃗� − �⃗�′)�̂�NW(�⃗�′), (47)

with

𝑓NW↦mod(�⃗�) = ∫R3
𝑑3𝑘

√

ℏ𝜔(�⃗�)
𝑚𝑐2

𝑒𝑖�⃗�⋅�⃗�

(2𝜋)3
. (48)

Notice that the support of 𝑓NW↦mod(�⃗�) is R3, which means that �̂�mod(�⃗�) is nonlocal with respect to the Newton–Wigner scheme. This
roves that Amod

M (�⃗�) ≠ ANW
M (�⃗�) with the consequent incompatibility between the two schemes.

.3. AQFT and modal scheme

In Sections 5.1 and 5.2, we detailed the relevant features of the AQFT and the modal scheme, respectively, and we made a
omparison with the Newton–Wigner scheme. In this subsection, instead, we use the results of Sections 5.1 and 5.2 to show the
ifferences between the AQFT and the modal scheme.

The incompatibility between the two schemes can be proved by comparing the respective algebras AAQFT
M (�⃗�) and Amod

M (�⃗�). By
lugging Eq. (37) in Eq. (47) we obtain

�̂�mod(�⃗�) = ∫R3
𝑑3𝑥′

[

𝑓�̂�↦mod(�⃗� − �⃗�
′)�̂�(0, �⃗�′) + 𝑓�̂�↦mod(�⃗� − �⃗�′)�̂�(0, �⃗�′)

]

, (49)

ith

𝑓�̂�↦mod(�⃗�) = ∫R3
𝑑3𝑘

𝜔(�⃗�)𝑒𝑖�⃗�⋅�⃗�

(2𝜋)3
√

2𝑚𝑐2
,𝑓�̂�↦mod(�⃗�) =

−𝑖
√

2𝑚𝑐2
𝛿3(�⃗�). (50)
14
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Fig. 2. Localization schemes in the relativistic (QFT) and the nonrelativistic (NRQM) theory. The Newton–Wigner and the Born scheme are equivalent, whereas
the AQFT and the modal scheme converge to the Born scheme in the nonrelativistic limit.

The fact that 𝑓�̂�↦mod(�⃗�) has support in the entire space R3 implies that the modal operators �̂�mod(�⃗�) are nonlocal with respect to the
AQFT scheme, i.e., �̂�mod(�⃗�) ∉ AAQFT

M (�⃗�), which means that Amod
M (�⃗�) ≠ AAQFT

M (�⃗�).
As remarked in Sections 5.1 and 5.2, both the AQFT and the modal scheme are characterized by a genuine position coordinate

⃗ representing the underlying Minkowski spacetime. However, at variance with the AQFT scheme, the modal scheme cannot be
considered fundamental in nature. This is due to the acausal effects produced by the superluminal spreading of the wave functions.
Also, the microcausality axiom does not hold, as it can be noticed from Eq. (46). The non commutativity of operators in disjoint
spatial regions does not guarantee the statistical independence of measurements in those regions. For these reasons, the modal
scheme does not give a genuine notion of localization.

Due to Eq. (46), the strict localization property is not always satisfied, which means that Eq. (19) does not hold for any
�̂�B ∈ Amod

M (B) and any |𝜓⟩ = �̂�A|0A⟩, with �̂�A ∈ Amod
M (A) and A ∩ B = ∅. This also occurs in the AQFT scheme with

�̂�A ∈ AAQFT
M (A) and �̂�B ∈ AAQFT

M (B), as a consequence of the Reeh–Schlieder theorem [Section 3.1]. However, in Section 3.2,
we showed that the unitarity of the local operator �̂�B guarantees the validity of the strict localization property (19) in the AQFT
scheme. Crucially, the commutation relation [�̂�A, �̂�B] = 0 and the definition of unitary operators were used to derive Eq. (19). In
the case of the modal localization scheme, the operators �̂�A and �̂�B do not commute, which means that Eq. (19) is not guaranteed
anymore.

In the context of QFTCS, the notion of localization in the AQFT scheme appears to be invariant under diffeomorphisms and,
hence, frame independent [32]. Physically, this means that observers in different frames agree on the region in which observables
and states are localized. Conversely, the modal scheme is based on the single particle representation as positive frequency mode.
The positivity of the frequency is tied to the particular stationary spacetime [18]; hence, the notion of localized observables and
states appears to be frame dependent [32]. This result gives an additional motivation to disregard the modal scheme as a faithful
description of local phenomena in the QFTCS regime while supporting the AQFT scheme instead.

6. Localization in the nonrelativistic regime

In the previous section we detailed three localization schemes for the fully relativistic QFT. Among them, only the AQFT scheme
gives a genuine notion of localization. In particular, any local experiment can only be faithfully described in the framework of AQFT.
The Newton–Wigner and the modal scheme, instead, appear more as mathematical artifices not suited for a genuine description of
local phenomena.

In this section, we consider the nonrelativistic limit of QFT and we show that the three localization scheme converge to each
other. Hence, in such a regime, the Newton–Wigner and the modal scheme acquire the genuine notion of localization entailed by
the AQFT framework.

To obtain this result, we study the NRQM and the notion of localization prescribed by the nonrelativistic theory. We remark that
in NRQM the fundamental objects are the first-quantized position and momentum operator, �̂�𝑖 and �̂�𝑖. The notion of localization in
NRQM is based on the definition of �̂�𝑖 and on the Born interpretation of quantum mechanics, according to which the modulo
square of wave functions gives the probability density to find particles. We demonstrate that such a localization program is
equivalent to the Newton–Wigner scheme as they both rely on local creators and annihilators. Then, by following Ibnouhsein et al.
[16] and Papageorgiou and Pye [17], we show that both the AQFT and the modal scheme converge to the Born scheme in the
nonrelativistic limit. These results are summarized by Fig. 2.

Due to the converge between the Newton–Wigner and the AQFT, we prove that the nonlocal effect described in Section 3.2 is
suppressed by the nonrelativistic limit. In particular, we show that any state localized in a space region A is also strictly localized
in A, in the sense that it does not affect any measurement conducted in some disjoint region B.

Similarly to Section 5.1, we detail this result by considering an Alice–Bob scenario, in which Alice prepares the state |𝜓⟩ in
A and Bob measures �̂�B in B. At variance with Section 5.1, here, |𝜓⟩ and �̂�B are nonrelativistic and, hence, can be equivalently
localized with respect to any scheme. The nonrelativistic Alice–Bob scenario inherits from the AQFT scheme the fundamental notion
of localization, in the sense that, regardless of the scheme used to describe the experiment, one always obtains an approximately
genuine description of the local phenomena in the two regions A and B. Also, the strict localization property of the Newton–Wigner
Alice–Bob scenario emerges as an independence between the preparation of |𝜓⟩ and the measurements of �̂�B.

The section is organized as follows. In Section 6.1, we present the Born scheme, which gives the familiar description of localized
15

states in the NRQM. In Section 6.2, we show the equivalence between the Newton–Wigner and the Born scheme; whereas, in
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Sections 6.3 and 6.4 we demonstrate the convergence of the AQFT and the modal scheme, respectively, to the Born–Newton–
Wigner scheme. In Section 6.5 we use this convergence to show that the Reeh–Schlieder nonlocal effect is suppressed in the
nonrelativistic limit and the strict localization property always holds; we detail this result by considering the Alice–Bob scenario in
the nonrelativistic regime.

6.1. Born localization scheme

In the NRQM, states are localized according to the Born localization principle which assumes that the probability density of
inding the system in any space point is the square of the amplitude of its wave function. Hence, particles are localized in the
upport of their wave functions and they are orthogonal to each other if the localization occurs in disjoint spatial regions.

In the first-quantized theory, the algebra is generated by the observables position �̂�𝑖 and momentum �̂�𝑖, satisfying the canonical
commutation relation

[�̂�𝑖, �̂�𝑗 ] = 𝑖𝛿𝑖𝑗 , (51)

and by eventual internal degrees of freedom (e.g., spin), which we will ignore for the sake of simplicity. The wave function 𝜓(�⃗�) of
ny state |𝜓⟩ can be derived from the eigenstates of ̂⃗𝑥, such that 𝜓(�⃗�) = ⟨�⃗�B|𝜓⟩, where �̂�𝑖|�⃗�B⟩ = 𝑥𝑖|�⃗�B⟩.

Wave functions in the momentum space can be obtained by means of states with defined momentum |�⃗�⟩, which are defined by
̂ 𝑖|�⃗�⟩ = 𝑘𝑖|�⃗�⟩. The identity relating |�⃗�⟩ to the states with defined position |�⃗�B⟩ is

|�⃗�B⟩ = ∫R3
𝑑3𝑘 𝑒−𝑖�⃗�⋅�⃗�

√

(2𝜋)3
|�⃗�⟩, (52)

which is the Fourier transform of |�⃗�⟩. One can use Eq. (52) to switch from the representation of states in the position space to their
representation in the momentum space.

From the normalization of |𝜓⟩ (i.e., ⟨𝜓|𝜓⟩ = 1) and the orthogonality condition ⟨�⃗�B|�⃗�′B⟩ = 𝛿3(�⃗� − �⃗�′), one obtains the familiar
result for wave functions

∫R3
𝑑3𝑥|𝜓(�⃗�)|2 = 1, ⟨𝜓|𝜓 ′

⟩ = ∫R3
𝑑3𝑥𝜓∗(�⃗�)𝜓 ′(�⃗�). (53)

Eq. (53) captures the idea that 𝜓(�⃗�) is the probability amplitude of finding the particle in �⃗�, with the consequent interpretation of
the support of 𝜓(�⃗�) as the region of localization for the particle. For any couple of states |𝜓⟩ and |𝜓 ′

⟩, if 𝜓(�⃗�) and 𝜓 ′(�⃗�) have disjoint
upport, they are orthogonal to each other.

In the second-quantized theory, the state |�⃗�B⟩ appears as a single particle with defined position. It is defined as

|�⃗�B⟩ = �̂�†B(�⃗�)|0⟩, (54)

ith �̂�†B(�⃗�) as the creator of the particle in �⃗� and |0⟩ as the vacuum state. All the relevant features of the Born localization scheme
n second quantization are inherited from the first-quantized theory. This includes the definition of localized states in terms of
ompactly supported wave functions and the orthogonality condition for states that are localized in disjoint regions.

By definition, the operators �̂�B(�⃗�) and �̂�†B(�⃗�) satisfy the canonical commutation relation

[�̂�B(�⃗�), �̂�
†
B(�⃗�

′)] = 𝛿3(�⃗� − �⃗�′), [�̂�B(�⃗�), �̂�B(�⃗�′)] = 0. (55)

s a result of Eq. (55), the global Fock space factorizes into local Fock spaces  =
⨂

𝑖(𝑖) and the global vacuum factorizes into
he local vacua |0⟩ =

⨂

𝑖|0(𝑖)⟩. Any state |𝜓⟩ localized in  is equivalently represented by an element of () such that

|𝜓⟩ = |𝜓()⟩⊗

[

⨂

𝑖
|0(𝑖)⟩

]

, (56)

here |𝜓()⟩ is the element of () and {𝑖} is a partition of R3 ⧵  . In this sense, we say that the localized state |𝜓⟩ lives in the
ocal Fock space ().

.2. Equivalence between the Newton-Wigner and the Born scheme

In Section 2, we presented the Newton–Wigner scheme as an attempt to formalize the notion of localization in RQM and in QFT.
onrelativistic theories, instead, are described by the Born scheme, which was introduced in Section 6.1.

By comparing the two localization schemes, it is straightforward to see that they are equivalent. In particular, they are both based
n the existence of local creation and annihilation operators. All the features found for the Newton–Wigner scheme in Sections 2
nd 5.1 also apply to the Born localization scheme.

Conceptually, the only difference is given by the regime in which they are defined. The Born scheme was originally introduced
n nonrelativistic theories (i.e., NRQM), whereas the Newton–Wigner scheme was conceived in relativistic physics (i.e., RQM and
FT). The original attempt by Newton and Wigner [1] was precisely to recover the Born interpretation of localized states in the

elativistic regime. Consequently, the assumptions postulated by the authors are also met by the Born scheme in NRQM. The results
16

f their work are not only applicable in the relativistic theory but can also be understood in the context of NRQM.
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By seeing the NRQM as the nonrelativistic limit of the corresponding field theory, one can embed the Born scheme into the QFT.
his leads to a complete equivalence between the Newton–Wigner and the Born scheme in the nonrelativistic regime of quantum
ields.

The equivalence is made possible by the fact that both theories are provided with an unifying notion of single particles with
efined momentum |�⃗�⟩. In NRQM, these states are defined as the eigenstates of the first-quantized operator ̂⃗𝑘, whereas in QFT they

are associated to a basis of positive frequency solutions of the Klein–Gordon equation (25). The two definitions of |�⃗�⟩ are unified
by the idea that they both represent the same physical object.

By following the Newton–Wigner approach, we define the single particle localized in �⃗� by means of Eq. (2). The same definition
applies to the state |�⃗�B⟩ with respect to the Born localization scheme. By comparing Eq. (2) with Eq. (52) we find that |�⃗�B⟩ = |�⃗�NW⟩.

his proves the equivalence between the two localization schemes.

.3. Convergence of the AQFT to the Born scheme

In Section 6.1, we remarked that the NRQM is characterized by the Born notion of localization. The NRQM, however, is not
egarded as a fundamental theory of physics and it only comes from nonrelativistic approximations of the QFT. Hence, one expects
hat the Born scheme actually emerges as the nonrelativistic limit of a more fundamental notion of localization properly defined in
he QFT.

In Section 6.2, we showed that the Born localization scheme is equivalent to the Newton–Wigner scheme. In Section 5, we
emarked that QFT has more than one localization scheme and that the Newton–Wigner scheme is in conflict with the notion of
ocalization in AQFT. Between the two schemes, the latter is more fundamental than the former for the following reasons: (i) The
enuine notion of position in QFT is given by the Minkowski spacetime upon which the algebra of fields is constructed, while
he Newton–Wigner position operator is by no means associated to spacetime events on a manifold; (ii) The AQFT localization
cheme is based on the microcausality of fields which forbids violation of causality and superluminal signaling, at variance with the
ewton–Wigner which is affected by the instantaneous spreading of wave functions.

In summary, the AQFT scheme gives the fundamental notion of localization in QFT, while the Born scheme defines the localization
n the NRQM. The convergence between the two schemes is expected in the nonrelativistic limit as a consequence of the equivalence
etween the NRQM and the QFT in such a limit. In this section, we show that the Newton–Wigner and the AQFT scheme converge
n the nonrelativistic regime. Due to the equivalence between the Newton–Wigner and the Born scheme, this also proves the
onvergence between the Born and the AQFT scheme.

.3.1. Classical versus quantum position
Before showing the convergence between the two localization schemes, we want to discuss conceptual differences that seem to

ake them incompatible at any limit. We already remarked that, in AQFT scheme, the variable �⃗� labeling the fields �̂�(0, �⃗�) and �̂�(0, �⃗�)
are coordinates representing classical events in the Minkowski spacetime; in this sense we say that the notion of localization in AQFT
is classical. Conversely, in NRQM, the variable �⃗� is used as an index for second-quantized operators generated by the first-quantized
position observable ̂⃗𝑥; hence, the notion of localization is quantum. This leads to the apparent incompatibility between the two
notions of localization. Why is the position quantum in NRQM and classical in QFT?

An answer to this question can be found by comparing the Galilean and the Poincaré group which are at the foundation of the
nonrelativistic and the relativistic physics. In NRQM, the operators �̂�𝑖 and 𝑚�̂�𝑖 are, respectively, the generators of the translations
and the Galilean boosts. Conversely, in relativistic theories, the Poincaré group is defined by the generators of translations 𝑃 𝜇 ,
rotations 𝐽 𝑖 and Lorentzian boosts �̂� 𝑖. It has been proven that in the nonrelativistic limit, the Poincaré group converges to the
centrally-extended Galilean group and that the generator of Lorentzian boosts �̂� 𝑖 is approximated by the generator of Galilean
boosts 𝑚�̂�𝑖 [49,50]. Intuitively, this can be seen by noticing that for small momenta |�⃗�| ≪ 𝑚𝑐∕ℏ, Lorentzian boosts effectively act
as Galilean boosts by transforming �⃗� linearly.

The upshot is that the operator �̂�𝑖 should not be interpreted as a quantized version of the Minkowski coordinate 𝑥𝑖, but as the
limit of the Lorentzian boost operator �̂� 𝑖 divided by the mass 𝑚. In the centrally-extended Galilean algebra, the operators �̂�𝑖 and
�̂�𝑖 satisfy the canonical commutation relation (51), which leads to the correct transformation rule for the position operator under
space translation, i.e.,

exp(𝑖𝑎 ⋅ ̂⃗𝑘)�̂�𝑖 exp(−𝑖𝑎 ⋅ ̂⃗𝑘) = �̂�𝑖 + 𝑎𝑖. (57)

Consequently, the operator �̂�𝑖 plays the dual role of position observable and Galilean boost generator.
The interpretation of �̂�𝑖 as a position observable is only valid in the nonrelativistic Galilean theory. The lack of fully relativistic

nature in �̂�𝑖 is noticeable from the noncovariant and acausal features described in Section 2. Notwithstanding the correct behavior
under spatial translation [Eq. (57)], the operator �̂�𝑖 does not properly transform under Lorentz boost and, hence, cannot be seen as
a representative of the Poincaré group.

We now know why the Born–Newton–Wigner operator �̂�𝑖 emerges as a position operator in NRQM. However, in the relativistic
theory we already had classical Minkowski coordinates 𝑥𝜇 assuming the role of position variable. Are they still somehow present in
the NRQM or do they disappear in the nonrelativistic limit? The question is conceptually relevant, because, contrary to the operator
̂ 𝑖, the coordinates 𝑥𝜇 have a fundamental notion of localization.

Clearly, we cannot directly compare the classical variable 𝑥𝜇 with the quantum operator �̂�𝑖. Instead, we need to consider the
17

second-quantized operators of NRQM labeled by �⃗� and compare them with field operators of QFT in the hypersurface 𝑡 = 0. We
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remark that second-quantized operators in �⃗� are generated by the Newton–Wigner operators �̂�NW(�⃗�), whereas field operators in (0, �⃗�)
re generated by �̂�(0, �⃗�) and �̂�(0, �⃗�). Alternately, one can consider

�̂�AQFT(�⃗�) =
√

𝑚𝑐2

2ℏ2
�̂�(0, �⃗�) − 𝑖

√

2𝑚𝑐2
�̂�(0, �⃗�), (58)

and its adjoin as generators of the local algebra AAQFT
M (�⃗�). The inverse of Eq. (58) is

�̂�(0, �⃗�) = ℏ
√

2𝑚𝑐2

[

�̂�AQFT(�⃗�) + �̂�
†
AQFT(�⃗�)

]

, (59a)

�̂�(0, �⃗�) = 𝑖

√

𝑚𝑐2
2

[

�̂�AQFT(�⃗�) − �̂�
†
AQFT(�⃗�)

]

. (59b)

A priori, the variable �⃗� appearing in �̂�NW(�⃗�) and in �̂�AQFT(�⃗�) have different meaning. In the case of �̂�NW(�⃗�), �⃗� appears as an index
esulting from the second quantization prescription; whereas, in �̂�AQFT(�⃗�), �⃗� is a genuine coordinate representing a spacetime event.
owever, it has been proven that in the nonrelativistic limit, the two fields �̂�AQFT(�⃗�) and �̂�(�⃗�) converge [16,17]. Consequently, we

ee that the Minkowski coordinate �⃗� does not disappear in the nonrelativistic limit, but remains as an index for the annihilator field
̂(�⃗�).

.3.2. Convergence between Newton-Wigner and AQFT operators
The convergence between �̂�AQFT(�⃗�) and �̂�(�⃗�) has two consequences. On one hand, we see that the genuine Minkowski coordinate

⃗ emerges in the NRQM as an index for the annihilator field �̂�(�⃗�). On the other hand, we have the proof that the Newton–Wigner and
he AQFT localization schemes converge in the nonrelativistic limit. Indeed, any operator that is localized in �⃗� with respect to the
ewton–Wigner scheme can be approximated by operators which are localized in �⃗� with respect to the AQFT scheme. This means

hat the fundamental notion of localization owned by the Minkowski coordinate �⃗� is approximately shared with the Newton–Wigner
osition operator ̂⃗𝑥.

To show the convergence between �̂�AQFT(�⃗�) and �̂�(�⃗�), different approaches have been considered, including the use of coarse-
rained operators [16] and the restriction of the Hilbert space to a bandlimited subspace [17]. These methods are based on the
efinition of a minimum resolution in space and a maximum energy scale by means of the Compton wavelength 𝜆C = ℏ∕𝑚𝑐.

Ibnouhsein et al. [16] assume that the minimum experimental resolution of nonrelativistic phenomena is described via coarse-
raining modeling. In such a regime, coarse-grained operators are assumed to appear indistinguishable from their fine-grained
ounterparts. The convergence between the Newton–Wigner and the AQFT localization schemes can be realized by noticing that the
ernels 𝑓�̂�↦NW(�⃗�) and 𝑓�̂�↦NW(�⃗�) appearing in Eq. (37) decay exponentially as exp(−|�⃗�|∕𝜆C) when �⃗� is outside the minimum spatial
esolution, i.e., |�⃗�|≫ 𝜆C.

Explicitly, the coarse-grained versions of �̂�AQFT(�⃗�) and �̂�NW(�⃗�) are defined as

�̂�AQFT,𝑗,𝛬 = ∫R3
𝑑3𝑥𝐺𝛬(𝐷𝑗 − �⃗�)�̂�AQFT(�⃗�), (60a)

�̂�NW,𝑗,𝛬 = ∫R3
𝑑3𝑥𝐺𝛬(𝐷𝑗 − �⃗�)�̂�NW(�⃗�), (60b)

ith 𝑗 ∈ Z3 as grid coordinates, 𝐷 as the spatial separation of the grid points and

𝐺𝛬(�⃗�) =
1

(2𝜋𝛬2)1∕4
exp

(

−
|�⃗�|2

4𝛬2

)

(61)

as the Gaussian smearing function with spatial resolution 𝛬 ≪ 𝐷. The approximation �̂�AQFT,𝑗,𝛬 ≈ �̂�NW,𝑗,𝛬 for 𝛬 ≫ 𝜆C is proven
by Ibnouhsein et al. [16] and leads to the convergence between the Newton–Winger and the AQFT schemes in the nonrelativistic
limit.

At variance with Ibnouhsein et al. [16], the method adopted by Papageorgiou and Pye [17] is based on the definition of the
bandlimited subspace 𝛬

M as the Fock space of particles with momenta lower than the cutoff 1∕𝛬. By restricting �̂�AQFT(�⃗�) and �̂�NW(�⃗�)
o 𝛬

M with 𝛬 ≫ 𝜆C, the authors derive the approximation �̂�NW(�⃗�)|
|𝛬

M
≈ �̂�AQFT(�⃗�)

|

|

|𝛬
M

at first order in 𝜆C∕𝛬 ≪ 1.

The proof is based on computing the Bogoliubov transformation between the operators �̂�AQFT(�⃗�) and �̂�(�⃗�), i.e.,

�̂�AQFT(�⃗�) = ∫R3
𝑑3𝑘

[

𝑓�̂�↦AQFT(�⃗�, �⃗�)�̂�(�⃗�) + 𝑓�̂�†↦AQFT(�⃗�, �⃗�)�̂�
†(�⃗�)

]

, (62)

ith

𝑓�̂�↦AQFT(�⃗�, �⃗�) =
𝑒𝑖�⃗�⋅�⃗�

2
√

(2𝜋)3

⎡

⎢

⎢

⎣

√

𝑚𝑐2

ℏ𝜔(�⃗�)
+

√

ℏ𝜔(�⃗�)
𝑚𝑐2

⎤

⎥

⎥

⎦

, (63a)

𝑓�̂�†↦AQFT(�⃗�, �⃗�) =
𝑒−𝑖�⃗�⋅�⃗�

2
√

(2𝜋)3

⎡

⎢

⎢

⎣

√

𝑚𝑐2

ℏ𝜔(�⃗�)
−

√

ℏ𝜔(�⃗�)
𝑚𝑐2

⎤

⎥

⎥

⎦

. (63b)
18



Reviews in Physics 12 (2024) 100095R. Falcone and C. Conti

𝑎
s

The restriction of Eqs. (11) and (63) to the bandlimited subspace 𝛬
M is

�̂�NW(�⃗�)|
|𝛬

M
=∫

|�⃗�|<1∕𝛬
𝑑3𝑘𝑓�̂�↦NW(�⃗�, �⃗�)�̂�(�⃗�), (64a)

�̂�AQFT(�⃗�)
|

|

|𝛬
M
=∫

|�⃗�|<1∕𝛬
𝑑3𝑘

[

𝑓�̂�↦AQFT(�⃗�, �⃗�)�̂�(�⃗�) + 𝑓�̂�†↦AQFT(�⃗�, �⃗�)�̂�
†(�⃗�)

]

, (64b)

with

𝑓�̂�↦NW(�⃗�, �⃗�) = 𝑒𝑖�⃗�⋅�⃗�
√

(2𝜋)3
. (65)

Notice that

𝑓�̂�↦AQFT(�⃗�, �⃗�) ≈ 𝑓�̂�↦NW(�⃗�, �⃗�) if |�⃗�|≪ 𝜆−1C , (66a)

𝑓�̂�†↦AQFT(�⃗�, �⃗�) ≈ 0 if |�⃗�|≪ 𝜆−1C . (66b)

Hence, by expanding Eqs. (64) to the first order in 𝜆C∕𝛬 ≪ 1, we obtain �̂�NW(�⃗�)|
|𝛬

M
≈ �̂�AQFT(�⃗�)

|

|

|𝛬
M

, which leads to the convergence
between the two localization schemes in the nonrelativistic regime.

Papageorgiou and Pye [17] also provide the expansion of the Bogoliubov transformation (64) up to the second order in 𝜆C∕𝛬 ≪ 1.
This gives corrective terms that spoil the nonlocality of �̂�NW(�⃗�) with respect to the AQFT scheme at the first nontrivial order.

6.4. Convergence of the modal to the Born scheme

In this subsection, we show the convergence between the modal and the Newton–Wigner scheme in the nonrelativistic limit.
Due to the equivalence between the Newton–Wigner and Born scheme [Section 6.2], we implicitly show the convergence between
the modal and the Born scheme.

We follow the strategy of Papageorgiou and Pye [17] that we already used in Section 6.3 for the case of the AQFT schemes.
Firstly, we restrict Eq. (36) to the bandlimited subspace 𝛬

M to obtain

�̂�mod(�⃗�)||𝛬
M
= ∫

|�⃗�|<1∕𝛬
𝑑3𝑘

[

𝑓�̂�↦AQFT(�⃗�, �⃗�) − 𝑓 ∗
�̂�†↦AQFT(�⃗�, �⃗�)

]

�̂�(�⃗�), (67)

where 𝑓�̂�↦AQFT(�⃗�, �⃗�) and 𝑓�̂�†↦AQFT(�⃗�, �⃗�) are defined in Eq. (63). Then, we use Eqs. (64a), (66) and (67) to derive the approximation
�̂�NW(�⃗�)|

|𝛬
M
≈ �̂�mod(�⃗�)||𝛬

M
when 𝜆C∕𝛬 ≪ 1. This implies that any element of Amod

M (�⃗�) can be approximated to an element of ANW
M (�⃗�)

and that the two localization schemes converge. Due to the equivalence between the Newton–Wigner and Born scheme, we also
proved the convergence between the modal and the Born scheme.

We remark that the Born scheme converges to the AQFT scheme as well [Section 6.3]. Hence, in this subsection, we have also
indirectly proven the convergence between the modal and the AQFT scheme. To have a direct proof, compare Eq. (64b) with Eq. (67)
and use Eq. (66) to show that �̂�AQFT(�⃗�)

|

|

|𝛬
M

≈ �̂�mod(�⃗�)||𝛬
M

. As a consequence of this convergence, we find that the modal scheme
acquires a genuine notion of localization in the nonrelativistic regime.

6.5. The strict localization property in the nonrelativistic limit

In Section 3.2 we showed that, as a consequence of the Reeh–Schlieder theorem, the AQFT scheme does not always satisfy the
strict localization property. This means that the outcome of experiments in any space region B may depend on the preparation of
states in on other disjoint region A.

At variance with the AQFT scheme, the Newton–Wigner scheme always satisfies the strict localization property [Section 5.1].
However, real life experiments can only be faithfully represented by the AQFT scheme, which is the only one providing a genuine
notion of localization. Hence, the strict localization property satisfied by the Newton–Wigner scheme does not generally occur in
genuinely local experiments.

The incompatibility between the two schemes disappears in the nonrelativistic limit [Section 6.3]. In such a regime, the Newton–
Wigner scheme acquires a genuine notion of localization from the AQFT and local experiments are expected to satisfy the strict
localization property.

In this subsection, we will show that the nonlocal effects predicted by the AQFT scheme do not occur in the nonrelativistic limit of
QFT. Intuitively, the result can be deduced from noticing that Reeh–Schlieder quantum correlations of the vacuum are exponentially
suppressed in nonrelativistic scales [41]. However, a more detailed proof can be given by using the results of Section 6.3.

The local algebra AAQFT
M (�⃗�) is generated by the local fields �̂�AQFT(�⃗�), which are indistinguishable from the Newton–Wigner fields

̂NW(�⃗�) in the nonrelativistic limit. Explicitly, this means that any operator �̂� ∈ AAQFT
M (�⃗�) generated by momentum operators �̂�(�⃗�)

⃗ ̂ NW
19

atisfying 𝜆C|𝑘|≪ 1 can be approximated to the operator 𝑂NW ∈ AM (�⃗�) obtained by replacing �̂�AQFT(�⃗�) with �̂�NW(�⃗�).
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a
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Fig. 3. Local preparation of nonrelativistic states by Alice and local measurement of nonrelativistic observables by Bob in two different regions of space. The
states are prepared via nonselective (a) and selective (b) operations. In both cases, the outcomes of Bob’s measurements are not influenced by Alice’s local
operations. The Reeh–Schlieder nonlocal effect shown in Fig. 1 is suppressed by the nonrelativistic limit.

Hence, any nonrelativistic state |𝜓⟩ = �̂�A|0M⟩ with �̂�A ∈ AAQFT
M (�⃗�A) and any nonrelativistic observable �̂�B ∈ AAQFT

M (�⃗�B) are
pproximated by some |𝜓NW⟩ = �̂�NW,A|0M⟩ and �̂�NW,B ∈ ANW

M (�⃗�B), with �̂�NW,A ∈ ANW
M (�⃗�A). The state |𝜓NW⟩ and the operator �̂�NW,B

satisfy the strict localization property

⟨𝜓NW|�̂�NW,B|𝜓NW⟩ = ⟨0M|�̂�NW,B|0M⟩. (68)

hen �⃗�A ≠ �⃗�B. This means that |𝜓NW⟩ gives the same outcome as the vacuum |0M⟩ when measuring �̂�NW,B.
In summary, any state |𝜓⟩ that is localized in �⃗�A with respect to the AQFT scheme is approximately localized in �⃗�A with respect to

the Newton–Wigner scheme and hence it appears indistinguishable from the vacuum in �⃗�B ≠ �⃗�A. This means that |𝜓⟩ is approximately
strictly localized.

To give a practical example, consider the two Alice–Bob scenarios described in Section 5.1. Alice is an experimenter that locally
prepares a state in the region �⃗�A, while Bob performs local measurements in �⃗�B. Depending on the localization scheme, the outcome
of Bob’s measurements may or may not be influenced by the preparation of the state by Alice.

In the nonrelativistic limit, the two localization scheme converge. This leads to an equivalence between the two Alice–Bob
experiments. In this unifying scenario, the preparation and the measurement in disjoint region appear independent [Fig. 3], in
agreement with the Newton–Wigner Alice–Bob experiment. Also, the fundamental notion of localization inherited from the AQFT
Alice–Bob scenario guarantees the applicability of the results for genuinely local experiments.

7. Conclusions

Different localization schemes have been considered for the QFT in Minkowski spacetime. Among them, only the AQFT
framework is able to provide a relativistically consistent notion of localization for states and observables. The Newton–Wigner
scheme, instead, is inspired by the nonrelativistic theory and it is based on local creators and annihilators resulting from the
definition of a second-quantized position operator. Finally, the modal scheme comes from the modal representation of particles
as positive frequency solutions of the Klein–Gordon equation.

Even if the Newton–Wigner and the modal schemes are not suited for the description of relativistic local phenomena, they become
indistinguishable from the AQFT scheme in the nonrelativistic limit. Only in the nonrelativistic limit, the familiar description of local
states in NRQM by means of wave functions and position operator leads to correct laboratory predictions.
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i
o

Local preparation of nonrelativistic states never influence nonrelativistic measurements conducted in disjoint space regions. This
s at variance with the relativistic regime, where such an independence is violated by selective preparations of states as a consequence
f the vacuum correlations contained in the vacuum |0M⟩.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We acknowledge financial support by the HORIZON-EIC-2022-PATHFINDERCHALLENGES-01 HEISINGBERG project 101114978.

References

[1] T.D. Newton, E.P. Wigner, Rev. Modern Phys. 21 (1949) 400.
[2] S.A. Fulling, Aspects of Quantum Field Theory in Curved Spacetime, in: London Mathematical Society Student Texts, Cambridge University Press, 1989,

pp. 48–73.
[3] G.C. Hegerfeldt, Phys. Rev. D 10 (1974) 3320.
[4] R. Haag, D. Kastler, J. Math. Phys. 5 (7) (1964) 848, https://pubs.aip.org/aip/jmp/article-pdf/5/7/848/8174205/848_1_online.pdf.
[5] R. Haag, in: R. Balian, W. Beiglbock, H. Grosse (Eds.), Local Quantum Physics: Fields, Particles, Algebras, Springer-Verlag, 1992.
[6] R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason (Eds.), Advances in Algebraic Quantum Field Theory, in: Mathematical Physics Studies, Springer,

2015.
[7] C.J. Fewster, K. Rejzner, in: F. Finster, D. Giulini, J. Kleiner, J. Tolksdorf (Eds.), Progress and Visions in Quantum Theory in View of Gravity, Springer

International Publishing, Cham, 2020, pp. 1–61.
[8] H. Halvorson, M. Muger, in: J. Butterfield, J. Earman (Eds.), Philosophy of Physics, 2007, pp. 731–864, arXiv:math-ph/0602036.
[9] H. Reeh, S. Schlieder, Nuovo Cim. 22 (5) (1961) 1051.

[10] J.M. Knight, J. Math. Phys. 2 (4) (1961) 459, https://pubs.aip.org/aip/jmp/article-pdf/2/4/459/8149657/459_1_online.pdf.
[11] A.L. Licht, J. Math. Phys. 4 (11) (1963) 1443, https://pubs.aip.org/aip/jmp/article-pdf/4/11/1443/8168411/1443_1_online.pdf.
[12] M. Redhead, Found. Phys. 25 (1) (1995) 123.
[13] R. Clifton, H. Halvorson, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 32 (1) (2001) 1.
[14] G. Valente, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 48 (2014) 147, relativistic Causality.
[15] E. Witten, Rev. Modern Phys. 90 (2018) 045003.
[16] I. Ibnouhsein, F. Costa, A. Grinbaum, Phys. Rev. D 90 (2014) 065032.
[17] M. Papageorgiou, J. Pye, J. Phys. A 52 (37) (2019) 375304.
[18] R.M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, in: Chicago Lectures in Physics, University of Chicago Press,

Chicago, IL, 1995.
[19] R. Falcone, C. Conti, Phys. Rev. D 107 (2023) 045012.
[20] R. Falcone, C. Conti, Phys. Rev. D 107 (2023) 085016.
[21] R. Falcone, C. Conti, Phys. Rev. A 108 (2023) 022807.
[22] W. Weidlich, A.K. Mitra, Il Nuovo Cimento (1955-1965) 30 (1) (1963) 385.
[23] G.N. Fleming, Phys. Rev. 139 (1965) B963.
[24] G.C. Hegerfeldt, S.N.M. Ruijsenaars, Phys. Rev. D 22 (1980) 377.
[25] J.F. Perez, I.F. Wilde, Phys. Rev. D 16 (1977) 315.
[26] G.C. Hegerfeldt, Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 238–245,
[27] G.N. Afanasev, S.M. Eliseev, Y.P. Stepanovsky, Helv. Phys. Acta (1996).
[28] V. Moretti, Lett. Math. Phys. 113 (3) (2023) 66.
[29] D.R. Terno, Phys. Rev. A 89 (2014) 042111.
[30] C. De Rosa, V. Moretti, Lett. Math. Phys. 114 (3) (2024) 72.
[31] D.P.L. Castrigiano, Dirac and Weyl fermions – the only causal systems, 2021, arXiv:1711.06556 [math-ph].
[32] R. Falcone, C. Conti, Localization in quantum field theory for inertial and accelerated observers, 2024, arXiv:2401.03975 [hep-th].
[33] S. Hawking, W. Israel, General Relativity; an Einstein Centenary Survey, Cambridge University Press, 1980, (Chapter 14).
[34] W.G. Unruh, Phys. Rev. D 14 (1976) 870.
[35] S.A. Fulling, Phys. Rev. D 7 (1973) 2850.
[36] P.C.W. Davies, J. Phys. A 8 (1975) 609.
[37] L. Parker, D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, in: Cambridge Monographs on Mathematical Physics,

Cambridge University Press, 2009.
[38] R. Clifton, D.V. Feldman, H. Halvorson, M.L.G. Redhead, A. Wilce, Phys. Rev. A 58 (1998) 135.
[39] K. Kraus, A. Böhm, J. Dollard, W. Wootters, States, Effects, and Operations: Fundamental Notions of Quantum Theory, in: Lecture Notes in Physics, Springer

Berlin Heidelberg, 1983.
[40] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70 (1993) 1895.
[41] S.J. Summers, R. Werner, Phys. Lett. A 110 (5) (1985) 257.
[42] S.J. Summers, R. Werner, J. Math. Phys. 28 (1987) 2440.
[43] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47 (1935) 777.
[44] G.N. Fleming, Philos. Sci. 67 (3) (2000) 515.
[45] S. Doplicher, R. Longo, Invent. Math. 75 (3) (1984) 493.
[46] D. Buchholz, Comm. Math. Phys. 36 (1974) 287.
[47] S.S. Horujy, K.Y. Dadashyan, Czech. J. Phys. B 29 (1) (1979) 29.
[48] S.J. Summers, Comm. Math. Phys. 86 (1) (1982) 111.
[49] E. Inonu, E.P. Wigner, Proc. Natl. Acad. Sci. USA 39 (6) (1953) 510.
[50] G. Kaiser, J. Math. Phys. 22 (4) (1981) 705, https://pubs.aip.org/aip/jmp/article-pdf/22/4/705/8151411/705_1_online.pdf.
21

http://refhub.elsevier.com/S2405-4283(24)00005-4/sb1
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb2
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb2
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb2
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb3
https://pubs.aip.org/aip/jmp/article-pdf/5/7/848/8174205/848_1_online.pdf
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb5
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb6
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb6
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb6
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb7
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb7
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb7
http://arxiv.org/abs/math-ph/0602036
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb9
https://pubs.aip.org/aip/jmp/article-pdf/2/4/459/8149657/459_1_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/4/11/1443/8168411/1443_1_online.pdf
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb12
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb13
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb14
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb15
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb16
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb17
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb18
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb18
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb18
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb19
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb20
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb21
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb22
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb23
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb24
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb25
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb26
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb27
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb28
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb29
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb30
http://arxiv.org/abs/1711.06556
http://arxiv.org/abs/2401.03975
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb33
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb34
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb35
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb36
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb37
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb37
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb37
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb38
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb39
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb39
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb39
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb40
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb41
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb42
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb43
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb44
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb45
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb46
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb47
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb48
http://refhub.elsevier.com/S2405-4283(24)00005-4/sb49
https://pubs.aip.org/aip/jmp/article-pdf/22/4/705/8151411/705_1_online.pdf

	Localization in quantum field theory
	Introduction
	Newton-Wigner scheme
	Newton-Wigner scheme in RQM
	Newton-Wigner scheme in QFT
	Hegerfeldt theorem

	AQFT scheme
	Reeh–Schlieder theorem
	Apparent violation of causality

	Modal scheme
	Comparison between localization schemes
	Newton-Wigner and AQFT scheme
	Fundamental differences
	Local particle content
	Independence via tensor product of local Hilbert spaces and algebras
	Intrinsic notion of localization
	Strict localization property and Alice–Bob scenario
	Orthogonality condition

	Newton-Wigner and modal scheme
	AQFT and modal scheme

	Localization in the nonrelativistic regime
	Born localization scheme
	Equivalence between the Newton-Wigner and the Born scheme
	Convergence of the AQFT to the Born scheme
	Classical versus quantum position
	Convergence between Newton-Wigner and AQFT operators

	Convergence of the modal to the Born scheme
	The strict localization property in the nonrelativistic limit

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


