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This paper presents the Complex Vector Gain-Based Annealer (CoVeGA), an analog computing
platform designed to overcome energy barriers in XY Hamiltonians through a higher-dimensional
representation. Traditional gain-based solvers utilizing optical or photonic hardware typically rep-
resent each XY spin with a single complex field. These solvers often struggle with large energy
barriers in complex landscapes, leading to relaxation into excited states. CoVeGA addresses these
limitations by employing two complex fields to represent each XY spin and dynamically evolving
the energy landscape through time-dependent annealing. Operating in a higher-dimensional space,
CoVeGA bridges energy barriers in this expanded space during the continuous phase evolution, thus
avoiding entrapment in local minima. We introduce several graph structures that pose challenges
for XY minimization and use them to benchmark CoVeGA against single-dimension XY solvers,
highlighting the benefits of higher-dimensional operation.

I. INTRODUCTION

The growing complexity and sheer scale of modern sci-
entific and industrial computing tasks are pushing us to
look beyond traditional von Neumann architectures for
solutions to hard optimization problems. These architec-
tures, which dominate computing today, rely on a clear
separation between memory and processing and execute
tasks in a step-by-step manner. While traditional com-
puting has been reliable for decades, it’s starting to fall
behind when it comes to the needs of today’s special-
ized applications—particularly those that demand high
speed, energy efficiency, and scalability. As areas like
machine learning, big data analysis, and real-time pro-
cessing continue to grow, the limitations of the von Neu-
mann approach have become more evident, creating a
bottleneck that is increasingly difficult to overcome. This
is where analog systems come in, offering a tailored ap-
proach to specific types of computing tasks, bypassing
the constraints of conventional architectures.

Physics-inspired analog machines have been proposed
using various platforms such as superconducting qubits
[1–3], optical parametric oscillators [4–7], memristors [8],
lasers [9–11], photonic systems [12, 13], trapped ions
[14], polariton condensates [15, 16], photon condensates
[17], and surface acoustic waves [18]. These specialized
physical machines minimize programmable spin Hamil-
tonians, where the couplings between spins – given by
the interaction matrix J – are designed such that the
global minimum corresponds to the optimal solution of a
combinatorial optimization problem. Problems like num-
ber partitioning, traveling salesman, graph coloring, spin
glass systems, knapsack problem, binary linear program-
ming, graph partitioning, and Max-Cut can be mapped
to spin Hamiltonians [19–21]. Further applications in-
clude machine learning [22], financial markets [23], and
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portfolio optimization [24]. Most proposed physical ana-
log machines use one-dimensional (‘hard’ or ‘soft’) spins
as variables in the discrete binary Ising Hamiltonian HI =

−∑
N
i,j Jijsisj with si = ±1, or the continuous XY Hamil-

tonian HXY = −∑
N
i,j Jijsi ⋅ sj , where si = (cos θi, sin θi),

θi ∈ [0,2π), and N is the number of spins.

The XY model describes a system of spins constrained
to rotate within a plane, each possessing a continu-
ous degree of freedom characterized by a phase θi rel-
ative to a fixed axis. Interactions between phases give
rise to a rich array of dynamics, including vortices and
Berezinski-Kosterlitz-Thouless transitions [25]. Origi-
nally developed for statistical mechanics and condensed
matter physics, the XY model has found extensive ap-
plications in various physical systems where rotational
symmetry is essential. Notably, it applies to superfluid-
ity and superconductivity [26], cosmology [27], nematic
liquid crystals [28], magnetic nanoparticle ensembles [29],
protein folding [30], and phase retrieval problems [31].

Gain-based minimizers utilize soft-spin bifurcation dy-
namics via Andronov-Hopf bifurcations to minimize spin
Hamiltonians [32]. The enhanced dimensionality offered
by soft-spin models reduces energy barriers present in
classical hard-spin Hamiltonians by representing fixed
spin amplitudes as continuous variables [33]. We recently
proposed the Vector Ising Spin Annealer (VISA) as an
Ising minimization model capable of overcoming obsta-
cles in solving combinatorial optimization problems [34].
By employing three soft modes to represent the vector
components of an Ising spin, VISA bridges minima sep-
arated by significant energy barriers in complex energy
landscapes. VISA uses real-valued soft spins, which can,
for example, represent the optical parametric oscillator
quadrature in coherent Ising machines.

In this paper, we propose to use multiple vector com-
ponents to represent the spins in networks of complex-
valued fields ψi, which are known to minimize XY and
Ising Hamiltonians in gain-based systems [35]. The
Stuart-Landau equation that governs the dynamics of
one-dimensional complex oscillators ψi in gain-based net-
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works is given by

ψ̇i = (γi − ∣ψi∣
2)ψi + α∑

j

Jijψj , (1)

where we introduced a regulation parameter α > 0 and
the effective gain rate γi is individually dynamically ad-
justed through feedback mechanism

γ̇i = ε (1 − ∣ψi∣
2) , (2)

which can be implemented via optical delay lines for laser
systems, or by spatial light modulators for polariton con-
densates [16]; see also Appendix A. The dynamical equa-

tion (1) can be written as ψ̇i = −∂H/∂ψ
∗
i , which describes

the process of gradient descent to the minima of the loss
function

H =
1

2

N

∑
i=1
(γi − ∣ψi∣

2)
2
−
α

2

N

∑
i,j

Jij (ψiψ
∗
j + ψ

∗
i ψj) , (3)

where γ̇i = 0 for all i at the threshold steady state. By
representing each oscillator in its polar form as ψi =

ri exp(iθi), Eq. (1) can be decomposed into real and
imaginary parts to get equations of the time evolution
of the amplitude ri and the phase θi as

ṙi = γiri − r
3
i + α∑

j

Jijrj cos (θi − θj) , (4)

θ̇i = −α∑
j

Jij
rj

ri
sin (θi − θj) . (5)

Starting from below the steady state threshold in the
vacuum state ri = 0, all oscillators are pumped equally.
Then, depending on the structure of J, nonzero ampli-
tudes emerge at different rates for each oscillator as the
pumping intensity increases. The feedback mechanism
of Eq. (2) adjusts each oscillator so that they all reach
equal amplitudes at the steady state threshold.

Only under the condition of equal amplitudes at the
steady state will Eq. (5) reach the minimum of the XY
Hamiltonian. The sum of the steady states of Eq. (4)

gives N = ∑
N
i=1 γi + α/2∑i,j Jij cos (θi − θj), so the global

minimum of the XY model corresponds to the smallest
effective injection ∑i γi. Close to the threshold, Eq. (5)
becomes fully analogous to the Kuramoto model

θ̇i = −α
N

∑
j=1

Jij sin (θi − θj) . (6)

Equation (1) can be adapted to minimize Ising Hamilto-
nians by restricting the state space of the phase, which
we detail in Appendix B.

Gain-based systems described by Eq. (1) can still set-
tle in local minima during amplitude bifurcation, which
limits the probability of finding the global minimum. To
combat this, we introduce the complex vector gain-based
annealer (CoVeGA) that exploits the advantages of ex-
tended spatial dimensions. In this model, continuous XY

spins are represented as complex-valued vectors in two-
dimensional vector space Ψi ∈ C2. The increased dimen-
sion over typical one-dimensional spins allows to effec-
tively overcome the barriers between minima.
This paper proposes a new approach to minimizing XY

Hamiltonians that utilizes the ultra-fast energy-efficient
architecture of photonics-based analog machines. In Sec-
tion II, we formalize CoVeGA, and provide expressions
for each term in its composite Hamiltonian. In Section
III, we use the Kuramoto model to investigate the dif-
ficulty of various XY minimization problems. This al-
lows us to identify suitably hard benchmark problems to
test CoVeGA and existing XY minimization algorithms,
as recovering the global minimum of these problems is
nontrivial. Lastly, Section IV compares the dynamics
of CoVeGA to the one-dimensional Stuart-Landau net-
work as well as other continuous-variable methods such
as spin-vector Langevin and Kuramoto models. We con-
trast these methods by finding ground and excited state
probabilities and illustrating the distribution of recovered
states.

II. COMPLEX VECTOR GAIN-BASED
ANNEALER

The CoVeGA model operates through a system of

N two-dimensional complex-field vectors Ψi = (ψ
(1)
i =

r
(1)
i eiθ

(1)
i , ψ

(2)
i = r

(2)
i eiθ

(2)
i ). It utilizes annealing,

symmetry-breaking bifurcation, gradient descent, and
mode selection to drive the system to the global min-
imum. The Hamiltonian is the sum of three terms
H =H1 + αH2 +H3, where

H1 =
1

2

N

∑
i=1
(γi(t) − ∣∣Ψi∣∣

2
2)

2
, (7)

H2 = −
1

2

N

∑
i,j

Jij (Ψi ⋅Ψ
∗
j +Ψ

∗
i ⋅Ψj) , (8)

H3 = −P (t)
N

∑
i,j=1
(Ψj ⊙Ψ∗i ) ⋅ [Q(Ψ

∗
j ⊙Ψi)] . (9)

Here, ⊙ indicates element-wise multiplication, and Q is
a 2 × 2 permutation matrix given by Q = ( 0 1

1 0 ). As the
effective gain γi(t) increases with time t from negative
(effective losses) to positive values, H1 anneals between
a convex function with minimum at ∣∣Ψi∣∣

2
2 = 0 for all i,

to nonzero amplitudes. Writing the complex vectors in
H2 using their polar coordinates gives

H2 = −∑
i,j

Jij (r
(1)
i r

(1)
j cos θ

(1)
ij + r

(2)
i r

(2)
j cos θ

(2)
ij ) , (10)

where we define θ
(k)
ij ≡ θ

(k)
i −θ

(k)
j . Equation (10) is analo-

gous to the second term on the right-hand side of Eq. (3),
but now we have two terms corresponding to the two di-
mensions in the complex vector space that CoVeGA op-
erates in. The effective gain is subject to the feedback
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governed by γ̇i = ε(1 − ∣∣Ψi∣∣
2
2). This drives the effective

gain rates from below and brings the amplitudes to 1
at the steady state. Finally, H3 is a penalty term with
time-dependent magnitude P (t) that enforces agreement
of the phase differences in each dimension. This 4-local
penalty term, expressed in Eq. (9), can be expanded into
its constituent complex fields, which transforms H3 to

H3 = −P (t)∑
i,j

ψ
(1)
i ψ

(2)∗
i ψ

(1)∗
j ψ

(2)
j + c.c. (11)

When the complex oscillators have equal unit-valued am-
plitudes, ∣∣Ψi∣∣

2
2 = 1 for all i, H3 becomes

H3 = −2P (t)∑
i,j

cos (θ
(1)
ij − θ

(2)
ij ) , (12)

which is minimized when θ
(1)
ij = θ

(2)
ij for all pairs (i, j).

As P (t) increases from P (0) = 0 to sufficiently large

P (T ) > 0 at t = T , the phase differences θ
(1)
ij and θ

(2)
ij

become equal. Therefore, up to a global phase off-

set, θ
(1)
i = θ

(2)
i . At the end of the annealing proto-

col, the target XY Hamiltonian HXY is minimized. We
evolve the CoVeGA Hamiltonian H using gradient de-
scent while simultaneously annealing parameters γi and
P (t). Therefore, for each oscillator i, the governing equa-

tion Ψ̇i = −∇iH is given by

Ψ̇i =Ψi (γi(t) − ∣∣Ψi∣∣
2
2) + α

N

∑
j=1

JijΨj

+ P (t)
N

∑
j=1

Ψj ⊙ [Q(Ψ
∗
j ⊙Ψi)] .

(13)

The operation of CoVeGA, therefore, relies on the gra-
dient descent of an annealed energy landscape. The
Hamiltonian H is 4-local due to the H3 penalty term.
While a 4-local Ising Hamiltonian can be relaxed to a
quadratic function without loss of generality [36], sub-
ject to an overhead corresponding to the introduction of
N ⌈k/2⌉ auxiliary variables, this is not the case for XY
Hamiltonians. In general, a 4-local XY Hamiltonian can
not be directly mapped to a 2-local Hamiltonian. How-
ever, some optical hardware can directly encode such
high-order interactions for XY systems [37].

In the next section, we seek suitable graph structures
for benchmarking CoVeGA and alternate algorithms for
XY Hamiltonian minimization. For benchmarking, we
choose graphs with analytically tractable yet nontrivial
ground states and energies and whose basins of attrac-
tion are small in volume. In this way, simple gradient-
based algorithms are expected to falter in recovering the
global minimum. Moreover, we seek technologically feasi-
ble graphs on analog hardware [38–40]. Complex graphs
for optimization may contain topological structures re-
sistant to simple local perturbations. In the XY regime,
these often arise as domain boundaries or vortices. For
domain boundaries, the transformation from the excited
state to the ground state requires an entire domain to

Figure 1. (a) Ground state solution, up to a global phase
change, for an N = 12 4-regular Möbius ladder graph. In this
ground state, every XY spin has a phase difference of ±2π/3
with each of its nearest neighbors. (b) Excited state of an
N = 102 4-regular Möbius ladder graph with D = 4. Here,
the phases are not illustrated, and instead color represents
the chilarity of each triangular base. For a base with indices
{i, j, k}, then Cijk = −1 is shown in yellow, Cijk = 1 as red,
and Cijk = 0 as green. (c) Frequency density histogram of
excitation parameter D for 1000 runs of the Kuramoto model
on N = {12,102,204} 4-regular Möbius ladder graphs. In each
run, initial phases θi(0) are chosen uniformly at random from
range [−π,π), and Eq. (6) is solved using the Euler scheme
with fixed time step ∆t = 0.1.

reverse its chirality, representing a significant energy bar-
rier to overcome. Therefore, in this case, local perturba-
tions are not enough to bridge local and global minima.

III. GRAPHS FOR XY MINIMIZATION

To rigorously test CoVeGA’s capabilities, we select
graph types that, due to their complex topologies and
high energy barriers, present distinct challenges for
gradient-based methods. We consider network graph
structures given by the coupling matrix J, resulting in
nontrivial minimization instances for simple gradient-
based solvers. To do this, we represent the gradient dy-
namics by the Kuramoto model (6), as it represents a
gradient descent with respect to XY phases θi. Moreover,
by using the Kuramoto model, we can infer the sizes of
the basins of attraction for each locally stable state. This
is because, under gradient descent, the system evolves to
the closest minima.
4-Regular Möbius Ladder
The 4-regular Möbius ladder network is an unweighted

4-regular circulant graph with antiferromagnetic cou-
plings Jij ∈ {−1,0} between its N vertices. It is inspired
by its 3-regular version, often used as an Ising solver
benchmark [33, 34, 41]; see Appendices C and D. We
only consider cases for which N/2 is divisible by 3, in
which case the ground state has no frustrations, and any
connected spin pair has phase difference ±2π/3. Then,
the graph, illustrated in Figs. (1)(a) and (b) consist of N
triangular bases connected to each other, with the first
and last bases joined, creating a periodic circular geom-
etry. For any triangle with nodes i, j, k, we define the
chirality Cijk ∈ {0,±1} depending on whether there is a
phase winding around these nodes and in which direc-
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tion. The ground state corresponds to alternating chiral-
ity between adjacent triangles. Therefore, we define the
excitation parameter D for any 4-regular Möbius ladder
graph as

D = ∑
{ijk}∈T

(1 − ∣Cijk ∣) , (14)

to account for excitations that occur as domain bound-
aries, where T is the set of vertices for each triangle. This
is where triangular bases with zero chirality separate do-
mains with triangular bases of alternating chirality ±1.
The frequency density histogram of excitation param-

eter D for states recovered by the Kuramoto model (6)
is shown in Fig. (1)(c). Since the system descends to the
closest minimum to the initial state according to Eq. (6),
the histogram represents the volumes of the basins of at-
traction for each minima. Figure (1)(c) shows that as the
system size N increases, the volume of the basin of at-
traction of the ground state decreases as a proportion of
the total volume of all basins, and recovering the ground
state using standard gradient descent becomes hard.

Triangular Lattice
The triangular lattice is a two-dimensional graph con-

sisting of triangles in a regular arrangement. Each of the
N vertices corresponds to an XY spin, while edges rep-
resent unweighted antiferromagnetic couplings Jij = −1.
The ground state is recognized by its arrangement of
phases, with every XY spin having phase difference ±2π/3
with each of its nearest neighbors. Similar to 4-regular
Möbius ladder graphs, we can use the same excitation
parameter D from Eq. (14) to categorize ground and ex-
cited states. The frequency density histogram of excita-
tion parameter D for states recovered by the Kuramoto
model (6) is shown in Fig. (2)(c). As the system size
N increases, the number of trials in the histogram bin
corresponding to the ground state D = 0 decreases.
Basic Kuratowskian
Basic Kuratowskian graphs are non-planar graphs

that serve as fundamental structures in graph theory;
they are sub-graphs of every two-dimensional or three-
dimensional non-planar graph. For edges with ran-
dom weights −1,0,+1, the Ising problem on basic Kura-
towskian graphs is known to be NP-complete [42]; how-
ever, the analysis of these graphs in the continuous XY
spin regime has not been extensively studied. Unlike 4-
regular Möbius ladder and triangular lattice graphs, the
ground state configuration and energy are not known a
priori due to the random coupling weights.

To construct the coupling matrix J for a basic Ku-
ratowskian graph, we assign each edge in Fig. (3)(a) a
weight randomly chosen from W = {−1,0,+1}. We sam-
ple the weights w from the discrete probability mass func-
tion pW ∶W → [0,1], where

pW (w) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
2
(1 − p) if w = −1,

p if w = 0,
1
2
(1 − p) if w = +1.

(15)

Figure 2. (a) A ground state solution for an N = 4 × 4 trian-
gular lattice graph, where every XY spin has a phase differ-
ence of ±2π/3 with each of its neighbors. (b) Excited state
of an N = 10 × 10 triangular lattice graph. Here, the phases
are not illustrated, and instead color represents the chiral-
ity of each triangular base. For a base with indices {i, j, k},
then Cijk = −1 is show in yellow, Cijk = +1 as red, and
Cijk = 0 as green. Domains are more likely to exist when
part of their boundaries are the edges of the triangular lattice
since, on these edges, there are no excited (green) triangu-
lar bases. This is a consequence of the graph’s non-periodic
boundary conditions. (c) Frequency density histogram of ex-
citation parameter D for 1000 runs of the Kuramoto model on
N = {16,100,196} triangular lattice graphs. In each run, ini-
tial phases θi(0) are chosen uniformly at random from range
[−π,π), and Eq. (6) is solved using the Euler scheme with
fixed time step ∆t = 0.1.

Here, the parameter 0 ≤ p ≤ 1 in Eq. (15) controls the
rank of J and influences the hardness of the XY mini-
mization problem, as shown in Figs. (3)(b) and (c). As p
increases, the number of nonzero entries in J decreases,
and consequently, the rank decreases. In spatial pho-
tonic XY and Ising machines, the rank of the coupling
matrix is an important feature of the spin network; in-
deed, some current implementations are only feasible for
low-rank coupling matrices [24].

Figure 3. (a) A configuration of XY phases on an N = 4 × 4
basic Kuratowskian graph with p = 0.2. Ferromagnetic, anti-
ferromagnetic, and zero couplings are illustrated as red, blue,
and black lines, respectively. (b) Rank of coupling matrix J
as a function of the probability parameter p. Each error bar
in (b) corresponding to a different value of p is constructed
from 100 Kuratowskian graphs, each with random coupling
weights generated by Eq. (15). (c) Box plot distributions of
sample variance values s2 from final state energies of Eq. (6),
obtained from N = 8 × 8 basic Kuratowskian graphs. Each
box plot in (c) is obtained by sampling the final state ener-
gies over 100 runs on each of the 100 Kuratowskian graphs
generated for each value of p.
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IV. RESULTS

In this section, we compare CoVeGA to the one-
dimensional spin version, whose Hamiltonian is given by
Eq. (3) and governed by the canonical Stuart-Landau
network Eq. (1), as well as to Kuramoto gradient de-
scent and other methods. The phase annealing protocol
of CoVeGA begins with P (0) = 0 and gradually increases
for t > 0, ensuring that the local phase difference in each
dimension of the complex-field vector Ψi becomes the
same. We increase P (t) to a sufficiently large value, so

that θij(1) = θ
(2)
ij holds for every pair (i, j), after which

we choose one dimension from which to extract the XY
phases. Under this constraint, each θ

(1)
i is equivalent

to θ
(2)
i up to a global phase shift, and hence the choice

of dimension is arbitrary. For simplicity, we choose a
monotonically increasing function P (t) that has a linear
dependence on time, such that P (t) = βt, although other
options may be chosen.

Figure (4) compares CoVeGA with the one-
dimensional Stuart-Landau model of Eq. (3) under
equivalent starting conditions on a 4-regular Möbius
ladder graph with N = 36. The figure demonstrates that
while the scalar version fails to find the ground state
(D = 0), CoVeGA leverages multidimensional phase
dynamics to recover the global minimum by bridging
minima unreachable by the one-dimensional approach.
Additionally, the CoVeGA mechanism allows for phase
changes at lower energy costs than required by the
scalar version, due to its ability to navigate through the
multidimensional space to find the most energy-efficient
path to the global minimum.

In addition, we compare CoVeGA to the spin-vector
Langevin (SVL) model that was proposed as a clas-
sical analog of a quantum annealing description us-
ing stochastic Langevin time evolution governed by the
fluctuation-dissipation theorem [44]. SVL is based on the
time-dependent Hamiltonian used in quantum anneal-
ing H(t) = A(t)H0 + B(t)HP, where the initial Hamil-
tonian is H0 = −∑i σ

x
i . We choose the problem Hamil-

tonian so that it maps to the XY Hamiltonian as HP =

−∑i,j Jij(σ
x
i σ

x
j +σ

z
i σ

z
j ), with Pauli operator σi acting on

the i-th variable. Real annealing functions satisfy bound-
ary conditions A(0) = B(T ) = 1 and A(T ) = B(0) = 0,
where T is the temporal length of the annealing sched-
ule. If the rate of change of the functions is slow enough,
the system stays in the ground state of the instantaneous
Hamiltonian so that at t = T the XY Hamiltonian is mini-
mized. The SVL model replaces Pauli operators with real
functions of continuous angle σz

i → sin θi, σ
x
i → cos θi,

and is therefore a classical annealing Hamiltonian using
continuous-valued phases θi. SVL dynamics is described
by a system of coupled stochastic equations

mθ̈i + bθ̇i +
∂H(θ)

∂θi
+ ξi(t) = 0, (16)

where m is the effective mass, b is the damping constant,

Figure 4. Panels (a) and (b) compare the trajectories of XY
spins in the CoVeGA model and the single-dimension Stuart-
Landau model, respectively, for an N = 36 4-regular Möbius
ladder graph. Red circles indicate initial states, while in (a),

blue and cyan circles correspond to final states for ψ
(1)
i and

ψ
(2)
i . Final states ψi in the scalar version (b) are highlighted

with blue circles. Panels (c) and (d) illustrate the effective
gain γi as the systems evolve. CoVeGA successfully recovers
the ground state without frustrations D = 0 as seen in in-
set (e), while the one-dimensional scalar version reaches the
excited state D = 2 shown in inset (f). Both systems start
from equivalent initial conditions, with the one-dimensional
scalar version beginning at ψi(0) = 0.01 exp(ia) and CoVeGA
at Ψi(0) = 0.01(exp(ia),0.1 exp(ib)), where a and b are uni-
formly chosen from range [−π,π). Panel (g) compares the
CoVeGA Hamiltonian H against the one-dimensional model
Eq. (3), while panel (h) shows the values of the XY Hamilto-
nians HXY.

and ξi(t) is an iid Gaussian noise. For quadratic uncon-
strained continuous optimization, such as minimizing the
XY model, the gradient term in Eq. (16) is

∂H(θ)

∂θi
= A(t) sin θi +B(t)∑

j=1
Jij sin(θi − θj), (17)

which in conjunction with fluctuation-dissipation rela-
tions ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t

′)⟩ = δijδ(t − t
′), give 2N

stochastic differential equations: dθi = (pi/m)dt and

dpi = (
∂H(θ)

∂θi
+
b

m
pi)dt + dWi, (18)

where dWi represents a real-valued continuous-time
stochastic Wiener process [44].
CoVeGA distinguishes itself from one-dimensional

Stuart-Landau networks, SVL, and the Kuramoto model
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Figure 5. The probability distribution of recovering a state
with excitation parameter D for CoVeGA, one-dimensional
Stuart-Landau, SVL, Kuramoto, and BFGS methods on N =
12 (blue), 102 (orange), and 204 (green) 4-regular Möbius
ladder graphs. One thousand runs are used to calculate the
probability of recovering excitation parameters D for each
value of N . Parameter values for CoVeGA are taken from
Table (I) in Appendix E [43], and so are values for the Stuart-
Landau network solver where applicable. For SVL, m = 1.0,
ξ ∼ N (0,0.1), and γ = 0.9. In all cases, a fixed time step of
∆t = 0.1 is used with annealing time length T = 1000.

through its gain-based annealing strategy in higher-
dimensional spaces. In Figs. (5) and (6), we compare
CoVeGA to these models and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm on 4-regular Möbius
ladder graphs and triangular lattice graphs, respectively.
BFGS is a classical quasi-Newton method for uncon-
strained nonlinear optimization that approximates the
Hessian matrix to guide the search for a local minimum.

By leveraging a multidimensional approach, the CoV-
eGA model recovers the ground state (D = 0) of 4-regular
Möbius ladder and triangular lattice graphs more often
than any of the compared methods. As a result, the dis-
tribution of excitations D for CoVeGA is skewed closer
to D = 0 for all tested values of N , compared to the
single-dimension Stuart-Landau network, and this effect
becomes more pronounced as N increases. While the an-
nealing schedules used in these approaches and in SVL
demonstrate efficient convergence to low-energy solutions
compared to Kuramoto and BFGS, CoVeGA’s higher di-
mensionality enables XY spins to traverse paths connect-
ing minima and converge to the ground state. This en-
hances system robustness, making the final system less
sensitive to initial conditions.

Next, we consider basic Kuratowskian graphs, which
exhibit significant difficulty for standard gradient descent
methods, as illustrated in Fig. (3) for small values of the
parameter p. However, the randomness of the couplings
can introduce statistical convergence issues in small sam-
ple sizes. Despite this, graphs with random couplings are
popular for benchmarking physical simulators [45–47].

Because basic Kuratowskian graph instances do not
have analytically known ground states, we use the prox-

Figure 6. The probability distribution of recovering a state
with excitation parameter D for CoVeGA, one-dimensional
Stuart-Landau, SVL, Kuramoto, and BFGS methods on N =
16 (blue), 100 (orange), and 194 (green) triangular lattice
graphs. One thousand runs starting from random initial con-
ditions are used to calculate the probability for each method
and for each value of N .

imity gap metric to evaluate performance. The proximity
gap provides a measure of the distance between any solu-
tion state and the best-known state by comparing their
objective values. More precisely, it is defined as the ra-
tio of the objective value obtained by a given method to
the best objective value found among all methods. Here,
the objective value is given by the XY Hamiltonian HXY.
When comparing optimization methods on basic Kura-
towskian graphs, we choose p = 0.1, the hardest value of
p, which is the probability that a coupling is set to zero.
From Fig. (3)(f), we see that this occurs when p = 0.1,
where the average sample variance s2 of Kuramoto runs
is maximized.
Figure (7)(a) compares the objective values achieved

by CoVeGA with those obtained by one-dimensional
Stuart-Landau, SVL, Kuramoto, and BFGS methods
for N = 64 and N = 144 basic Kuratowskian graphs.
We define the quality improvement of CoVeGA over
another method X in terms of objective values O as
(OX − OCoVeGA)/OCoVeGA, showcasing these metrics in
Fig. (7)(b), whereX represents the best-performing com-
peting method for each instance.

These results demonstrate that CoVeGA consis-
tently achieves ground states more reliably than one-
dimensional models, particularly in larger and more com-
plex systems.

V. CONCLUSIONS

This paper presents the Complex Vector Gain-Based
Annealer (CoVeGA). This approach combines multidi-
mensional continuous spin systems, gain-based oper-
ations, and soft-amplitude annealing to optimize XY
Hamiltonians on challenging graph structures. By ex-
ploiting higher-dimensional spaces, CoVeGA improves
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Figure 7. (a) Proximity gap box plots for each method
{CoVeGA, Stuart-Landau (SL), SVL, Kuramoto, BFGS} on
the same 200 instances of basic Kuratowskian graphs with
random bimodel weights, with instances divided equally be-
tween graph sizes N = 64 and N = 144. In all cases, the
matrix weight elements are drawn from the discrete probabil-
ity mass function given by Eq. (15) with p = 0.1. (b) Violin
plots demonstrate the distribution of CoVeGA’s quality im-
provement performance compared to the best solution found
by any competing methods across the N = 64 and N = 144
basic Kuratowskian graph instances.

phase mobility, enabling it to navigate complex energy
landscapes more effectively, overcome energy barriers,
and avoid local minima. This approach allows CoVeGA
to reach optimal solutions with greater efficiency and ac-
curacy compared to one-dimensional methods.

CoVeGA paves the way for the development of con-
tinuous analog optimization machines. Applying dimen-
sionality annealing techniques in optical-based spin ma-
chines suggests a promising future for ultra-fast compu-
tation and accurate ground state recovery, representing
a significant advancement in optimization technologies.
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Appendix A: Complex Ginzburg-Landau Equation

Gain-based models that describe the dynamics of com-
plex oscillators ψi are based on physical implementations
of laser or non-equilibrium condensate networks coupled
to a reservoir nR. The systems are described by the gen-
eralized complex Ginzburg-Landau equation

iψ̇i = −∇
2ψi + ∣ψi∣

2ψi + gnRψi + i(nR − 1)ψi, (A1)

with reservoir dynamics ṅR = −(b0+b1∣ψi∣
2)nR+Pi, where

g, b0, and b1 are dimensionless parameters, and Pi is
the pumping intensity. Networks of oscillators are con-
structed by coupling multiple lasers or condensates. In
this case, using the tight-binding approximation from
the mean-field complex Ginzburg-Landau equation, or
the mean-field Maxwell-Bloch equations for laser cavi-
ties, Eq. (A1) becomes

ψ̇i = −i∣ψi∣
2ψi − ψi + (1 − ig)

⎡
⎢
⎢
⎢
⎣
Riψi + α∑

j≠i
Jijψj

⎤
⎥
⎥
⎥
⎦
, (A2)

where Ri is the i-th reservoir density that follows dynam-
ics Ṙi = b0(γi −Ri − ξRi∣ψi∣

2), where ξ = b1/b0, γi is the
effective pumping rate, α quantifies the overall strength
of coupling, and Jij is the individual coupling strength
between the i-th and j-th oscillators. In the fast reservoir
relaxation limit, b0 ≫ 1 and the reservoir dynamics can
be replaced with its steady-state Ri = γi/(1 + ξ∣ψi∣

2) to
lead to a Stuart-Landau network (1) of coupled oscilla-
tors. For lasers, the nonlinear self-interactions given by
the first term on the right-hand side of Eq. (A2) are zero.

Appendix B: From XY to Ising in Gain-Based
Solvers

To obtain the minimum of the Ising Hamiltonian us-
ing Eq. (1), a mechanism is required to restrict phases
to θi ∈ {0, π}. This may be achieved in many ways, for
instance, by (i) coupling the real parts of the field in
the coupling term of Eq. (1) as Jij(ψj + ψ

∗
j ). Then the

phases θi will automatically be projected onto 0 or π
[32]. Or, by (ii) externally forcing the system at a fre-
quency resonant with the frequency of the coherent state
such that h(t)ψ∗(q−1) is added to the right-hand side of
Eq. (1), where h(t) is the real time-dependent magni-
tude of the resonant pumping term. The presence of this
external forcing produces q solutions whose phases differ
by 2π/q [35]. For q > 2, the network emulates the q-state
Potts model with phases restricted to discrete values that
are multiples of 2π/q. Minimizing the Ising Hamiltonian,
therefore, requires taking q = 2. For sufficiently large
h(t), a feasible Ising solution is obtained by penalizing
phases that are not equal to 0 or π.

Appendix C: Möbius Ladder Graphs for XY
Networks

Möbius ladder graphs are cyclic graphs with an even
number of vertices. They can be visualized as nodes
arranged in a ring with antiferromagnetic circle cou-
plings Jij = −1 between nearest neighbors, and variable
cross-circle couplings Jij = −J between diametrically op-
posite vertices. At some critical value J = Jcrit, the
ground state configuration changes. We denote these
states as S0 and S1, respectively. Notably, below and
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Figure 8. (a) Eigenvalues of an N = 8 Möbius ladder graph
as a function of J . Je, illustrated by the vertical red dashed,
is the point at which the two largest eigenvalues cross. XY

ground states correspond to S
(0)
XY for J < Jcrit and S

(1)
XY for

J > Jcrit, where Jcrit = Je for the XY model. XY spin config-

urations for (b) S
(0)
XY, and (c) S

(1)
XY.

above J = Je = 1 − cos(2π/N), the leading eigenvalue of
the coupling matrix J changes from S0 to S1, where for
Ising spins Jcrit ≠ Je. Ising Hamiltonian minimization on
Möbius ladder graphs is known to be computationally dif-
ficult for certain parameter regimes [33]. Specifically, for
cross-circle couplings Je < J < Jcrit, many physically in-
spired optimization algorithms fail to recover the ground
state with high probability [34]. This originates from the
behaviour of J, where for Je < J < Jcrit, the eigenvector
of the principal eigenvalue does not correspond to the
Ising ground state. Figure (8)(a) illustrates how these
eigenvalues vary as a function of J .

Similar to the Ising model, in the continuous XY
regime, there are two distinct ground states as J is var-

ied; namely S
(0)
XY for J < Jcrit and S

(1)
XY for J > Jcrit.

These have Hamiltonians H
(0)
XY = (J − 2)N/2 and H

(1)
XY =

[2 cos((N − 2)π/N) − J]N/2 respectively, and are shown
in Figs. (8)(b)-(c). The critical value Jcrit at which these
energies intercept is Jcrit = 1−cos(2π/N). This is exactly
equal to Je – the point at which the leading eigenval-
ues intercept one another. Therefore in the XY regime,
Je = Jcrit, and the eigenvectors of the principal eigen-
values correspond to the ground state solutions overall
J . We conclude that Möbius ladder graphs are compu-
tationally simple in the XY model. This motivates the
use of other graphs for benchmarking XY minimizers.
Specifically, in Section III we utilize frustration and the
promotion of domain boundaries to devise suitably hard
graphs.

Appendix D: Circulant Graphs

The weighted adjacency matrix J of a 4-regular
Möbius ladder graph is circulant because it is con-
structed through cyclical permutations of any N -vector.
The graph inherently has vertex permutation symmetry,
signifying boundary periodicity and uniform neighbor-
hoods. Any circulant matrix can be expressed as a poly-
nomial of a shift matrix P. For 4-regular Möbius ladder
graphs

J = −P −P2
−PN−2

−PN−1, (D1)

where P is the N ×N canonical shift matrix P = ( 0 I
1 0 ),

and here I is an (N − 1) × (N − 1) identity matrix. The
structure of a circulant matrix is contained in any row,
and its eigenvalues and eigenvectors can be analytically
derived using the N roots of unity of a polynomial ω =
exp(2πi/N), where the row components c of the matrix
J act as coefficients. The eigenvectors of J are the same
as the shift matrix P while the N eigenvalues λn are the
components of the product Fc, where F is the N × N
Fourier matrix. This gives the eigenvalues as

λn = −ω
n
− ω2n

− ω(N−2)n − ω(N−1)n

= −4 cos (2πn/N) cos (3πn/N) ,
(D2)

for n = 0,1, . . . ,N − 1. The two indices n corresponding
to the largest positive eigenvalues are given by

n =
3N ±N ± 6

6
± ⌊

N − 12

24
⌋ , (D3)

where N/2 is divisible by 3 and hence N is a factor of
6. The eigenvectors of J form an orthogonal basis, and
since λn ∈ R and J ∈ RN×N , then we can always choose
the eigenvectors to be real. In this case, the eigenvectors
corresponding to the eigenvalues with index n are

qn =
1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

2
ωn + ω−n

ω2n + ω−2n

⋮

ω(N−1)n + ω−(N−1)n

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
cos( 2πn

N
)

cos( 4πn
N
)

⋮

cos( 2(N−1)πn
N

)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (D4)

where the eigenvectors corresponding to the largest eigen-
values are 4-cyclic vectors (1,0,−1,0,1,0, . . . ,−1,0). In-
deed, this is the ground state solution of the 4-regular
Möbius ladder graph when you associate each compo-
nent of the eigenvector with the cosine of the phase.
Graphs with circulant coupling matrices are realizable in
current experimental platforms [38–40]. This, combined
with the accessibility to the analytical energy spectrum
they allow, makes them natural platforms for analyzing
and contrasting properties of different platforms.

Appendix E: Materials and Methods

In all comparisons between methods presented in this
paper, numerical integration is performed by the fourth-
order Runge-Kutta scheme with discrete time step ∆t =
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0.1. For CoVeGA, a linear annealing schedule is cho-
sen such that P (t) = βt. Each time evolution is to a
maximum time T = 1000. The total parameter space
for CoVeGA is {ε,α, β, γ(0)}, with optimal choices de-
duced by the Python machine-learner online optimiza-
tion package (M-LOOP) [43]. The hyperparameter α is
scaled by the inverse of the largest positive eigenvalue of
coupling matrix J such that α = α′/λmax, and the initial
effective gain is γi(0) = γ(0) for all i. For a selection
of graph sizes for 4-regular Möbius ladder graphs, tri-
angular lattice graphs, and basic Kuratowskian graphs,
the optimal parameter choices are detailed in Table (I).
Since the value of λmax varies for random instances of
basic Kuratowskian graphs, the values of α′ in Table (I)
for this case are chosen as the best over a sample of 100
p = 0.1 graph instances.

For results obtained using the one-dimensional Stuart-
Landau network given by Eq. (1), parameters ε, α, and
γ(0) are taken from Table (I). For SVL we fix m = 1.0,
b = 0.9, and the Gaussian noise ξ is sampled from

N(0,0.1). The Kuramoto model is implemented with-
out hyperparameters, given by Eq. (6) with α = 1. The
BFGS algorithm is ran with the SciPy library using the
scipy.optimize.minimize function.

Graph Type N ε α′ β γ(0)

4-Regular Möbius
12 0.032 2.882 0.020 −0.139
102 0.022 2.402 0.003 −0.453
204 0.002 2.529 0.008 −1.235

Triangular
16 0.045 1.129 0.018 −0.900
100 0.034 2.280 0.004 −0.526
196 0.010 1.301 0.005 −0.986

Kuratowskian
16 0.047 1.148 0.016 −0.295
64 0.023 2.763 0.007 −1.275
144 0.012 2.745 0.014 −1.285

Table I. Optimal sets of hyperparameters for different graphs
and sizes.
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J. D. Töpfer, P. Cilibrizzi, W. Langbein, and P. G.
Lagoudakis, Nature Materials (2017).

[16] K. P. Kalinin, A. Amo, J. Bloch, and N. G. Berloff,
Nanophotonics 9, 4127 (2020).

[17] M. Vretenar, B. Kassenberg, S. Bissesar, C. Toebes, and
J. Klaers, Physical Review Research 3, 023167 (2021).

[18] A. Litvinenko, R. Khymyn, R. Ovcharov, and
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