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We introduce a one-way, one-quantum cascade, whereby a single excitation proceeds one-
directionwise in a ladder of energy levels. This makes a variation from more famous two-way
cascades where the excitation can go up and down following its excitation or relaxation in the lad-
der. We provide closed-form solutions for two-photon correlation functions between any transitions
in such circular cascades. We discuss how the rich correlations that result from what appears to
be an extremely simple implementation, are essentially those which have been entertained from
complex architectures relying on strongly-correlated, many-body physics or cavity QED effects.

I. INTRODUCTION

Cascading is a widespread phenomenon that can am-
plify features of a system, as is best illustrated by the
domino effect. With bosons, it led to the idea of the
quantum cascade laser [1], whose realization [2] opened
new perspectives and regimes of operation for coherent
light [3]. The variation where the active medium itself
is also bosonic [4] led to new regimes of superbunched
emission [5]. Here, we consider cascades of a single quan-
tum of excitation, down a ladder of N levels. In con-
trast to the previous cascades, both the active medium
and the radiation field thus remain at the level of sin-
gle quanta. There is a rich variety of platforms where
this can take place [6–12] and such cascading is there-
fore not new, being in fact basically intrinsic to the way
optical emitters release their excitation [13]. Phenomena
like quantum cutting, whereby one quantum of excita-
tion results in the production of several photons, i.e.,
with quantum efficiency larger than 1, have been long
known [14, 15]. The main variation here will come from
bringing such cascades in a stationary regime. When a
cascade can be maintained in a steady state, it may re-
sult in a chain reaction that gives rise to new dynamical
regimes, as in the aforementioned quantum-cascade and
bosonic lasing. Under Continuous Wave (CW) excita-
tion, cascades have been particularly studied by the semi-
conductor community to characterize spectral lines from
complex multi-excitonic states [16] through the study
of their correlations. This allows to identify the order
of transitions [17, 18] and measure their radiative life-
times [19]. The technique has been for instance demon-
strated for the characterization of the tri-exciton, with
photon cascades involving up to N = 5 excitonic levels,
with three radiative steps [20] or four photon transitions
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from quadexcitons [21]. In the latter case and in other
striking examples (e.g., with the tri-exciton again, but
correlating all transitions simultaneously [22]), this was
under pulsed excitation so that correlations were reduced
to coincidences (in particular, of the bunching type), and
thus deprived from the time dynamics, which had to be
complemented by time-resolved photoluminescence. The
reason for pulse excitation is that such cascades balance
two types of transitions: downward as the system releases
its excitation, and upward as it gets re-excited by the
constant driving. As a result, depending on the pump-
ing power, one gets stuck at more or less high stages of
the ladder. Consequently, correlations are more easily
obtained between consecutive steps, where the system
is pinned, although photon correlations being so robust
to low signal, they have also been successfully demon-
strated between far-apart transitions even in the CW
regime [23]. Nevertheless, this two-way option for the ex-
citation which can hop up and down at any stage, weak-
ens the cascade as a whole and effectively turns it into a
succession of two-photon cascades. Here, we draw atten-
tion to spectacular features present in one-way cascades
where the excitation can only relax downward, until it
reaches the ground state, at which point it gets excited
again to the top, as sketched in Fig. 1(a). Recently, there
has been a surge of interest for such unidirectional flow
of various types of excitations [24–26]. Notably, both
quantum-cascade lasers and bosonic cascades maximize
their properties when the flow is unidirectional. Here,
we focus on the simplest possible one-way cascading: in-
coherent pumping initiates the cascade at random times
by resetting the single excitation to the highest level N
from the bottomest one. There needs not be an actual
top and bottom levels, and the structure could really be
circular, as sketched in Fig. 1(b). Given that this better
captures the structure of the transitions, we shall refer to
such cascades as “circular”. We will briefly discuss ways
to achieve them but we first motivate their interest, for
the correlations between the photons they produce.
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FIG. 1. (a) N -level cascade for N = 6, with five radiative transitions at rates γi (1 ≤ i ≤ 5) plus one reloading γ0. The
two-level system is in the dark-shaded box (N = 2) and the two-photon cascade from a three-level system in the light-shaded
box (N = 3), with their own γ0 transition. The generalization to any N is obvious. (b) The equivalent circular representation,
where pumping becomes a regular transition and could also be monitored. (c–h) All the possible correlation functions for N = 6,
when all γi = γ. There are four different traces, modulo time mirror symmetry, that account for all the 36 possible correlations.

The inset of g
(2)
2,1 in (d) makes a zoom in the window 1± ϵ where ϵ = 10−6, allowing to resolve five of the oscillations from the

cascade, which carry on forever and are present in all correlation functions for N ≥ 3.

II. LIQUID LIGHT AND WIGNER CRYSTALS

Our motivation is the recent report that such (cir-
cular) photon cascades with a large number of inter-
mediate steps endow autocorrelations in time that are
reminiscent of those found spatially in liquids [27], and
that familiar single-photon correlations from two-level
systems are a particular case of this broader cascading
scheme. This shows that cascading is interesting even
if one step only of the cascade is radiative. Interest-
ingly, in the limit of a large number of levels, this ap-
proaches perfect single-photon sources with opening of
a time gap [28]. Although stationary, such sources ex-
hibit features of pulsed emission, but without any ex-
ternal synchronization. We became latterly aware that
such peculiar correlations had been previously predicted
for strongly-interacting Rydberg atoms maintained in
their electromagnetically-induced transparency configu-
ration [29]. Such correlations are not available to Kerr-
type, point-interacting photon blockade. Instead, they
follow from a quite dramatic phase-transition from the
optically dense active medium itself, interacting strongly
and nonlocally [30] and clustering into small self-avoiding
regions, related to Wigner crystallization [29]. Switching
off the driving field transfers the spatial correlations to
temporal photons. This reinforce one’s feeling that such
correlations imprinted into the optical field correspond
to a new phase (here we cannot write “of matter” since
that is now more general than that). A remarkable point
is that such correlations—which have been described as
“quantum optics in its extreme, in which individual pho-
tons behave as impenetrable particles” [31]—are straight-
forwardly sculpted by a mere cascade mechanism, itself
excited incoherently and thus with no external coherence,

order or synchronicity. This produces an infinitely-long
stream of quasi-crystalline order (to take the terminol-
ogy of the Rydberg effect) as opposed to a finite size,
quenched pulse in most configurations (Zeuthen et al. [32]
discuss the CW driving converting the Poisson input into
a regular pulse train of single photons). Photon liquefac-
tion (to take the cascade terminology) thus appears to
be more general and fundamental than one could think
since it occurs in completely unrelated platforms from
completely different mechanisms. It seems clear that it
should be present in still other configurations or in dis-
guise, and represents a fundamental phase of the optical
field, which should be further scrutinized, especially as it
better corresponds to what one understands as a single-
photon source [28]. For instance, this type of correla-
tions is also possible in coherently-driven few-step cas-
cades [33]. The cascade implementation might thus be
a privileged platform to realize and investigate it, given
its simplicity in both conceptual, theoretical and applied
aspects, at least when contrasted to the Rydberg block-
ade version, which is a highly sophisticated platform, re-
plete with complications in real-laboratory implementa-
tions (such as “pollutants”, i.e., Rydberg atoms unduly
excited by their peers in the propagating blockade [34]).

In the following, we generalize our previous treatments
of such circular cascades by studying all the two-photon
correlations (not only one transition in isolation [27]) as
well as correlations from any subset of transitions. These
are other degrees of freedom from our scheme not avail-
able from the Rydberg gas. Since large cascades are nat-
urally more difficult to realize than small ones, and be-
cause two-photon cascade from a three-level system has
already enjoyed considerable popularity and attention,
we also focus on this particular case.
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III. FORMALISM

Our system of study is simple. If one contents with
correlations of the transitions alone, then all the results
can be obtained through rate equations, as was also
the case for the other types of cascades [17, 35]. Such
equations are best written in their matrix form for the
probabilities pi of each level |i⟩ to be excited at time t
for 1 ≤ i ≤ N :

∂t


pN

pN−1

...
p2
p1

 =


−γN−1 . . . γ0
γN−1 −γN−2

...
. . .

. . .

γ2 −γ1
0 γ1 −γ0

 p⃗ ,

(1)
where p⃗ is the vector on the lhs. This makes for j tran-
sitions, from level |j + 1⟩ to level |j⟩ for 1 ≤ j ≤ N − 1,
occuring at rate γj , while the reloading brings level |1⟩
back to level |N⟩ at rate γ0. Consequently, there are as
many transitions as levels, although the reloading one
is usually not regarded as a transition. This is an in-
dication of the conceptual difference between the model
(of levels) and the observable (transitions). In a quan-
tum treatment, pi would be obtained as ⟨i| ρ |i⟩ from the
density matrix ρ of the system, but in absence of gen-
uinely quantum observables, we do not need a master
equation. Such a quantum description is eventually de-
sirable, but even there, it would be especially because one
should correlate the emitted photons instead of the tran-
sition operators |j⟩⟨j + 1| from which such photon sup-
posedly originate. We write “supposedly” because there
is some inherent quantum uncertainty as to the identity
of a detected photon, whose attributes (such as frequen-
cies, time of detection, etc.) might not be sufficient to
distinguish it from other measured events. By correlating
transition operators, one makes the assumption that pho-
tons are clearly distinguishable, which can be the case,
at least in some approximation, for instance when dif-
ferent transitions differ greatly in frequencies. Note that
frequencies do not even appear explicitly at our current
level of description. A physical photodetection descrip-
tion which does not make such approximations requires
a theory of frequency-resolved photon correlations [36],
and we postpone this to a future work. Here, at the
level of transition operators, we can solve Eq. (1) with
standard linear algebra, expressing the general solution
as “basically a sum of exponentials with different time
constants” [20]

p⃗(t) =

N−1∑
j=0

CjA⃗je
λjt (2)

where A⃗j and λj are the eigenvectors and eigenvalues of
the relaxation matrix in Eq. (1). The eigenvalue problem

leads to the following equation:

N−1∏
i=0

(λ+ γi) = (−1)N−1
N−1∏
i=0

γi (3)

with the convention that γ0 ≡ P . For low N , we can
assume all these variables to be independent, but for
large N , since we do not know a closed-form solution
for this equation, to simplify our discussion and stick
to the main points, we will assume all rates (including
the pumping rate), to be the same, equal to γ. This is
with some loss of generality, and there are probably im-
portant qualitative effects to be found in the more gen-
eral configurations. In this γi = γ approximation for
all i, the eigenvalues can be found as λj = γ(1 − zjN )
for 0 ≤ j ≤ N − 1 while the elements of the eigenvectors

are given by Ajk = zjkN where

zN ≡ exp

(
2iπ

N

)
(4)

is the Nth root of unity. The steady state is propor-
tional to the eigenvector with eigenvalue 0, which always
exists since the determinant of the matrix is zero. Thus,

with λ0 = 0 and A0k = 1, also imposing
∑N−1

i=0 pi = 1,
then pSSk = 1/N for all k. This is the expected result
on physical grounds under the given approximations. To
compute correlation functions—the quantities of interest
in this text—we rely on the stationarity of the signal,
making p⃗ independent of t and thus providing the corre-
lations as

g(2)m,n(τ) =
pn|m−1(τ)

pssn
(5)

where pn|m−1(t) = pn(t) as given by Eq. (2) with the
initial condition pi(0) = δi,m−1, i.e., expressing the prob-
ability of finding the system in state n at time t + τ
given that it started in state m− 1 at time t, i.e., it just
underwent the transition m at this time. To compute
the constant Cj , we thus have to solve the corresponding
Eq. (2) at t = 0, i.e.,

N−1∑
j=0

CjAjn = δn,m−1 . (6)

The solution can be found by noting that the Nth roots
of unity sum up to zero, or, using the formula for the sum
of the first N terms of a geometric series, we find Cj =

z
−j(m−1)
N /N . This provides us with the general correla-
tion function for τ ≥ 0 between any two transitions:

g(2)m,n(τ) = 1 +

N−1∑
j=1

z
j(n−m+1)
N exp

(
−γτ(1− zjN )

)
. (7)

We restricted to positive τ , while for negative τ :

g(2)m,n(τ) = g(2)n,m(−τ) . (8)
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This is a generalization of our previous autocorrelation
function [27] when m = n (which was obtained with the
waiting time distribution), in which case the level indices
disappear and all transitions feature the same correla-
tions, that are also symmetric in time. The case m ̸= n
describes cross-correlations, between contiguous, or not,
transitions. This describes the density of probability that
if a photon is detected from transition m, then another
will be (or was if τ < 0) detected from transition n at
time τ . The case N = 1 washes out all correlations and
correspond to classical (Poisson) emission (of the ideal
gas in the perspective of Ref. [27]). The case N = 2 is
the incoherently-pumped two-level system, that describes
the paradigmatic CW single-photon source. Although
a cascading scheme, it is not traditionally regarded as
such but as a single-transition quantum emitter, although
its statistics, in particular its failure to suppress effi-
ciently multiphoton emission, is best understood from
the circular cascade [28], as we will further discuss. The
case N = 3 corresponds to the two-photon cascade from
a three-level system, which also received a fair share of
attention, and to which we return in more details in Sec-
tion V. The case N = 6 is shown in Fig. 1 as a particular
case of the obvious general N . We cover this case first to
provide results of general validity.

IV. MULTILEVEL CASCADE

From the N2 possibilities for correlating any two tran-
sitions from a N -level cascade, assuming equal rates,
Eq. (7) reduces to N different positive τ traces for the
correlation functions:

g
(2)
k{N}(τ) ≡ 1 +

N−1∑
j=1

zjkN exp
(
−γτ(1− zjN )

)
. (9)

By cyclicity of the roots of unity, g
(2)
k{N} = g

(2)
(k+N){N}. All

display maximum antibunching

g
(2)
k{N}(0) = 0 (10)

except if k = 0 (or a multiple of N) in which case, z0N =
zNN = 1 and the bunching is equal to the number of levels:

g
(2)
0{N}(0) = N . (11)

For convenience, we use the terminology of “bunching”
and “antibunching” for both auto and cross-correlations,
although this properly describes autocorrelations only.
These functions further combine to provide the full τ
(positive or negative) correlations according to Eq. (8),
so there are finally ⌊N/2⌋ + 1 different all-τ traces for
a N -level circular cascade, taking into account time mir-
ror symmetry (the +1 to account for the autocorrela-
tion). The relationship between all possible transitions
and the backbone structure (9) is obtained by rotation

of the cascade as, for any 1 ≤ k, l ≤ N :

g
(2)
k,l = g

(2)
(l−k+1){N} (12)

where on the left-hand side, the two indices now corre-
spond to which transitions are correlated, while on the
right-hand side, one has Eq. (9) where the curly bracket
index serves to track the number of transitions. This is
valid for all τ . This means that it is enough to know
the correlation between one transition (say the bottom
one) and the successive ones over halfway trough the lad-
der to know all the correlations (involving a time mirror
symmetry for the remaining transitions). For instance,

in Fig. 1, all autocorrelations are identical to g
(2)
1,1 in

panel (c) and g
(2)
2,1 is the time-mirror of g

(2)
0,1, or, alter-

natively, is identical to g
(2)
1,0. The physical interpretation

of such symmetries is clear: g
(2)
2,1 shows the density of

probability to detect a photon from the transition 1 after
detecting a photon from transition 2. Given that these
transitions are contiguous, the chances are high as di-
rectly related to the transition rate. The probability is
further boosted by the knowledge of the current state of
the system, which could otherwise be in any of the N
states prior to effectuating a transition, but removing
this uncertainty makes it N time more likely that it will
now emit at the sought transition, thus explaining the
integer factor (11). There is also a notable revival of
probabilities, in the form of an elbow at τ ≈ N/γ. This
corresponds to the second-order detection where the sys-
tem went around through the whole cascade again after
emitting the first photon, before detecting the second
one. There are similar peaks at τ ≈ kN/γ for all k,
corresponding to going round the whole cascade k times
before detection. One can resolve them by zooming in

the correlation function, as shown in the inset of g
(2)
2,1 in

Fig. 1(d), or by plotting g(2) − 1 in log-scale. Such oscil-
lations occur in all correlation functions for N > 2 and
have been described in more details for the autocorrela-
tion function [27]. Because they occur without any co-
herence and/or periodic driving, they can be seen as self-
oscillations [37], although of correlations from a system
that is itself stationary. Their magnitude increases slowly
but surely with N , as shown in Fig. 2 through the values

of g
(2)
i,i (τ) for the successive peaks as a function of N ,

i.e., the successive maxima of g
(2)
1{N}. It requires N = 6

to get a bunching of the first oscillation of g(2) ≈ 1.1
(10% deviation, cf. Fig. 1(c)) and N = 13 for the second
peak to reach that value. At N = 50, othe seventh peak
has g(2) ≈ 1.13 and the eight one g(2) ≈ 1.09 so at least
eight-order cascades can be considered neatly resolvable,
i.e., from the steady stream, strong correlations are main-
tained between any given photon and its eight descendant
round the cascade, each generation undergoing fifty tran-
sitions. More precise experiments could track down such
correlations arbitrarily down the stream for any N . A
similar dynamics occurs for negative times: the chances
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2nd
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2nd

1st

FIG. 2. Magnitudes of the successive peaks of g
(2)

1{N} (auto-

correlations, dark lines) and g
(2)

1{⌊(N+3)/2⌋} (cross-correlations

between opposite transitions in the ladder, dotted lines) as
a function of N . The cross-correlations oscillate because of
their asymmetry for odd N (the largest peak is taken). For
clarity, only the first seven peaks of cross-correlations are re-
tained.

get strongly suppressed that a photon from the transi-
tion 1 be observed before (τ < 0) one from transition 2,
which constitutes a transition in the wrong time order.
In a physical model, such a process becomes possible due
to detector uncertainties. Here, it is strongly suppressed
because it requires to go round the full cascade to get
another photon to pause a wrong-order one. This is im-
peded by all the intermediate steps. The succession of
antibunching at negative τ followed by bunching at posi-
tive τ defines the archetype of a photon cascade, although
this is one particular step only of the general dynamics,
but an important one to which we come back in Sec-

tion V. The identity between g
(2)
2,1 and g

(2)
1,0 is also clear as

we consider the same processes in different positions of
the ladder, as is obvious on the circular picture Fig.1(b)
of the cascade, in contrast to the linear one (a). Similar

dynamics explain non-contiguous transitions, e.g., g
(2)
3,1 in

panel (e) shows the bunching at positive τ of the almost
contiguous cascade, with only one intermediate transi-
tion to make, whose interruption also explains the τ = 0
antibunching in this and all other non-contiguous cor-
relations. Importantly, this flattens in time as the dis-
tance between transitions increases in the ladder. This is
the principle of photon liquefaction, which endows the
correlations with an intrinsic, spontaneous mechanism
for local time-ordering. The small τ behaviors can be
characterized through a series expansion of Eq. (9), but
since this removes the modularity of k, one must ensure
that 1 ≤ k ≤ N :

g
(2)
k{N}(τ) =

N

(N − k)!
(γτ)N−k + o(τN−k+1) . (13)

The case k = N (which identifies to k = 0 modulo N in
Eq. (12) and corresponds to contiguous transitions) is ex-
panded not around zero (as per Eq. (10)) but around N
(as per Eq. 11) and one must thus treat this case sepa-

(a) (b)

(c) (d)

FIG. 3. N -level cascade with N = 25, showing four illustra-
tive of the thirteen different correlations out of the 625 pos-
sible ones, namely, (a) contiguous or (c) next-to-contiguous
transitions as well as (b) autocorrelations and (d) mid-ladder
transitions. Long τ oscillations are now neatly resolved, man-
ifesting a strong local time-ordering. The correlation function
is discontinuous in (a) but not in the other panels, where it
exhibits a more or less flat plateau around τ = 0 as specified
by Eq. (13).

rately, to find:

g
(2)
N{N}(τ) = N exp(−γτ) + o(τN+1) (14)

so that to next-leading order in small times, g
(2)
N{N}(τ) =

N(1 − τ) + o(τ2), in agreement with Eq. (13). All to-
gether, this shows that high-order corrections account
for the long-term behaviour of these functions, following
the plateau, or exponential decay for k = N , when os-

cillations kick in before converging to g
(2)
k,N (∞) = 1. The

small-time approximations also confirm that the farther
the transitions in the cascade, the more suppressed is the
possibility of a coincidence in the way accounted for by
cumulative random events [28]: the probability to de-
tect photons from two given transitions k-steps away is
given by the compound probabilities of the intermedi-
ate steps in the sequence. This also “crystallizes” the
chance of the coincidence to occur at the kth trial, so
one has a steeper and larger bunching for small k. Once
such a one-cascade loop has been completed, the process
can then repeat, diluting the features as they become
both less strong and less well-resolved in time due to ac-
cumulations of time uncertainties, but still resulting in
all-time oscillations, already for the N = 3 cascade (but
not for N = 2, showing that the effect is not trivial and
some type of minimum cooperativeness is required for
it to occur). An illustrative case is shown in Fig. 3 for
the case N = 25. In this case, there are ⌊25/2⌋+ 1 = 13
different traces but it is enough to consider a few illustra-
tive cases, namely, the contiguous or almost contiguous
transitions, shown in Panels (a) and (c), which one can
contrast with their lower N case counterparts in Fig. 1(d)
and (e), to see how the liquefaction phenomenology su-
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perimposes itself to the immediate cascading. The traces
in (a) and (c) are very similar, except at small τ , where
the strong bunching is curbed by the impossibility of a
concidence from the in-betweener, cf. Eq. (10). As a re-
sult, the curve in panel (a) is discontinuous at τ = 0
while that in (c) is not. They differ more from the auto-

correlation function g
(2)
1{25} in panel (b) as well as the mid-

ladder case g
(2)
13{25} in (d) that correlates the most distant

transitions in the ladder. Since N is, in this case, odd,
there is one more transition on one side of the cascade
and the function is not exactly symmetric (cf. Fig. 1(f),
which is symmetric). Such opposite-transition correla-
tions look qualitatively like autocorrelations (especially
when exactly symmetric) although they are more corre-
lated, with steeper and higher bunching peaks, except
that their temporal gap is shorter, being N/(2γ) or half
the gap of the N/γ autocorrelation, since it takes that
time only to connect the two events. This shows how
auto-correlations bear more constrains as applying within
the same stream as opposed to cross-correlations that in-
volve two signals. This relates to an important concept,
which has accompanied photon cascades since their early
days, namely, that of their violation of classical inequal-
ities [38], predominantly, Cauchy-Schwarz inequalities of

the type g
(2)
nn (0)g

(2)
mm(0) ≥ [g

(2)
nm(τ)]2, which classical sig-

nals must satisfy. At our current level of description, the
violation is trivially enforced for small times, in the form
(from Eq. (13))

0 ≥ N2(γτ)2(N−m+n−1)

[N −m+ n− 1]!2
, (15)

which can never be satisfied (i.e., Cauchy–Schwarz in-
equalities are always violated). The violation is larger,
the farther away the transitions. Such violations, which
indicate that one is dealing with a quantum signal with
no classical equivalent, were in fact first observed by
Burnham and Weinberg [39] with parametric down con-
version and provided the earliest experiment evidence of
non-classicality of light, well ahead of the more famous
antibunching experiment of Kimble et al. [40], which is
the degenerate n = m version. Circular cascades thus
provide a platform to evidence even more forcefully non-
classical correlations from light, even though from a more
mundane relaxation, with no photon splitting.

Now that we characterized all possible transitions, we
can take the next engineering step afforded by such
cascades, by collecting light from a given subset S =
{i1, · · · , in} of transitions. This could be enforced by
having such transitions have the same frequency and fil-
tering out the undesired ones, whose participation to the
cascade is still necessary but not their contribution to the
emitted light. One could also think of selection by po-
larization, non-radiative process or any other trick whose
end result is to collect only photons from the subset. In
this case, the correlation function follows from the basic

correlation functions (7) as

g
(2)
S (τ) =

1

(nS)2

∑
i,j∈S

g
(2)
i,j (τ) (16)

where nS ≡ #S is the cardinality of S, i.e., the number
of transitions contributing to the emission. Thanks to

Eq. (8), g
(2)
S is τ -symmetric, as should be for a correlation

function. Some examples are shown in Fig. 4, this time
for N = 50. Of particular interest is to select k successive
transitions, in which case, as long as k ≪ N , one has
essentially the same autocorrelation but pierced through
by a central superbunching peak, of magnitude

g
(2)
J1,kK(0) =

N(nS − 1)

nS2
, (17)

as shown in Fig. 4(a). This corresponds to a liquid of
k-photon bundles, where each emission consists of a so-
called bundle (group) of k photons, i.e., closely-packed
photons in time as compared to the photons from the
other bundles. Thanks to the cascaded emission pro-
cess, those bundles do not have the harmonic progres-
sion of their cavity QED counterpart [41], but have in-
stead a more flexible temporal structure which could be
further engineered through the decay rates of the tran-
sitions. Similarly to the case of single photons, the cas-
caded regime optimizes their correlations through tem-
poral liquefaction [27], showing that the previous pro-
posals [41, 42] correspond to a temporal gas of bundles.
Interestingly, as an incoherent process, the bundle pu-
rity (percentage of events featuring exactly the sought k
number of photons in each bundle) is not fundamentally
limited and could thus be arbitrarily close to 1 regardless
of the size of the bundle. This is therefore another exam-
ple of the great flexibility and versatility of the circular
quantum cascade. For bundling as for Wigner crystal-
lization, it provides much simpler, robust and tuneable
implementations.

V. TWO-PHOTON CASCADE IN THE
THREE-LEVEL SYSTEM

The case N = 3 is both that of the simplest and
most studied radiative cascade under incoherent pump-
ing. Largely, this is due to the rich bi-exciton/exciton
cascade in semiconductors [43, 44] and its potential for
generating entanglement [45]. We can expect the circu-
lar implementation to be also more easily realized with
fewer steps. The two steps with N = 3 (if not counting
the excitation one) realize the paradigm of a photon cas-
cade. For that reason, we can indulge into a more general
study where we relax the degeneracy between the param-
eters. This will allow us to get an idea of how much has
just been overlooked in such an approximation. Before
that, however, it is instructive to pause and consider the
case N = 2 which, as an incoherently pumped system,
describe the archetypal single-photon source (red box in
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(a)

(b)

(c)

FIG. 4. Many-transition correlations where all the labelled
transitions in the subscript set are jointly detected, here for
an N = 50-level cascade. (a) Correlating two consecutive
transitions realizes a two-photon bundle liquid, with the ap-

pearance of a superbunching peak (with g
(2)

{1,2}(0) = 12.5 from

Eq. (17)). (b) Correlating distant transitions bring chaotic
looking patterns. (c) A random subset of four transitions
wash out the oscillations while still maintening the temporal
gap, realizing a dense temporal gas. Many other combina-
tions can be realized and remain to be investigated.

Fig. 1(a)). Our formalism shows, however, that it is the
special case of the “one-photon cascade in the two-level
system”. This adds to the well-known and standard au-
tocorrelation function

g1,1{N=2}(τ) = 1− exp
(
− (γ0 + γ1)|τ |

)
(18)

the cross-correlation between emission and excitation:

g1,0{N=2}(τ) = 1 +

(
γ0
γ1

)ς(τ)

exp
(
− (γ0 + γ1)|τ |

)
(19)

where ς(τ) ≡ 2Θ(τ)− 1 is +1 if τ ≥ 0 and −1 otherwise
(Θ is the Heavyside function). By circular symmetry,

one gets g
(2)
0,0(τ) = g

(2)
1,1(τ) and g0,1(τ) = g1,0(−τ). This

solution is notable for having been apparently overlooked
for so long. One of its merit is to clarify why incoherent
pumping of a two-level system fails to provide a good
single photon source: behind the antibunching (18) lurks
the strong bunching (19) of the re-excitation, which coun-
teracts from its cascading nature, the suppression of co-
incidences in the autocorrelations. This is the basic fact
whose understanding and mitigation should drive the de-
sign of efficient CW single-photon sources. The N = 3
steady-state solution of Eq. (1) can now be found in full
generality:

p⃗ss =

( 2∑
i,j=0
i>j

γiγj

)−1
γ0γ1
γ0γ2
γ1γ2

 . (20)

The autocorrelation function is the same for both tran-
sitions, which is also a feature of Eq. (7) as already ob-
served. Therefore, for i = 1, 2:

g
(2)
i,i (τ) = 1 +

+
γ012 − ζ

2ζ
e−

γ012+ζ
2 |τ | − γ012 + ζ

2ζ
e−

γ012−ζ
2 |τ | (21)

where we defined

ζ ≡

√√√√√ 2∑
i=0

γ2
i −

2∑
i,j=0
i̸=j

γiγj (22)

as well as γi1···ik = γi1 + · · · + γik with as many indices
as there are terms in the sum. We will use a bar to
denote a negative term, γi1···ık = γi1 + · · · − γik , so that,
e.g., γ01̄2 ≡ γ0 − γ1 + γ2. We remind that γ0 ≡ P is
the pumping rate. For the transition correlations in this
case, we find:

g
(2)
2,1(τ) = 1 +
1

4ζγ2
2

[
(γ01̄2 − ζ)

(
γ2
1 + γ2

2 − (γ0 + ζ)γ12
)
e−

ζ+γ012
2 τ − (γ01̄2 + ζ)(γ2

1 + γ2
2 − (γ0 − ζ)γ12)e

ζ−γ012
2 τ

]
if τ < 0 ,

1
4ζγ0γ1

[
(γ0̄12 + ζ)

(
(γ01̄ + ζ)γ1 + (2γ0 + γ1)γ2

)
e

ζ+γ012
2 τ − (γ0̄12 − ζ)

(
(γ01̄ − ζ)γ1 + (2γ0 + γ1)γ2

)
e−

ζ−γ012
2 τ

]
if τ > 0 ,

(23)

while, following Eq. (8), g
(2)
2,1(τ) = g

(2)
1,2(−τ).

A first interesting observation from this general solu-
tion is to consider the range of parameters that result in
oscillations or, on the other hand, in damped relaxations.
This follows from the sign of the radicand of Eq. (22),

which makes ζ real or imaginary and its exponential in
Eqs. (21) and (23) an additional damping or an oscilla-
tion, respectively. Spelling out the condition for oscilla-
tions, we must have 2γ0γ1+2γ0γ2+2γ1γ2 > γ2

0 +γ2
1 +γ2

2

with all γi > 0. Rearranging for γ2 as a function of γ0
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and γ1, this leads to γ2
2 − 2γ2(γ0 + γ1)− (γ0 − γ1)

2 < 0.
The zeros of this quadratic equation thus give us the
range of γ2 that results in oscillations of the correlation
functions for a given γ0 and γ1 as

(
√
γ0 −

√
γ1)

2 < γ2 < (
√
γ0 +

√
γ1)

2 . (24)

The same relations hold for any permutations of the in-
dices. This shows that if two rates are equal, oscillations
occur as long as the third (nonzero) rate is less than four
times the common decay rate. Clearly, the case where
all three decay rates are equal satisfy the condition for
oscillations. While we do not provide an exact statement
for the general case, it seems clear that a small spread of
the decay rates favour oscillations while at the same time
accommodating large deviations for some of the param-
eters. With N = 3, such oscillations are not resolvable
from the correlation function in a linear scale, since their
amplitude is too small (they would be visible in log-scale
for g(2) − 1), but this serves to illustrate the different
structural regimes that the mechanism supports and how
they survive or not different parameters. Extrapolated to
larger N , liquid light should thus be accessible even with
significant inhomogeneities of the cascading steps.

The exact form (23) for the two-photon cascade in a
three-level system admits in regimes of interest simpler
expressions, that one can compare to the phenomeno-
logical two-photon cascade correlations that assumes an
uncorrelated (Poissonian) stream of photons heralding
another stream [46]:

g(2)(τ) = 1 +

(1− p)
γ2
γ1

exp(γ2τ) if τ < 0,

p
γ2
γ1

exp(−γ2τ) if τ > 0.
(25)

where p describes the probability of good time ordering,
γ1 the emission rate of the uncorrelated heralding (first)
photon and γ2 that of the heralded (second) photons.
Namely, in the limit of small excitation, i.e., when γ0 ≪
γ1, γ2, so that ζ ≈

√
γ2
1 + γ2

2 − 2(γ1 + γ2) = |γ1 − γ2|, in
which case Eq. (23) takes the form:

g
(2)
2,1(τ) = 1 +

{
− exp(γ1τ) if τ < 0 ,
γ2

γ0
exp(−γ2τ) if τ > 0 ,

(26)

On the other hand, in the limit of high-pumping γ0 ≫
γ1, γ2, one finds:

g
(2)
2,1(τ) = 1+{
γ1

γ2
exp([γ1 + γ2]τ)−

(
1 + γ1

γ2

)
exp(γ0τ) if τ < 0 ,

γ2

γ1
exp(−[γ1 + γ2]τ) if τ > 0 .,

(27)

The second (negative) term for τ < 0 is negligible for
most τ except very close to zero where it forces the cor-
relations to be exactly antibunched. This is the main de-
viation of the cascading scheme as compared to Eq. (25)

which assumes uncorrelated heralders. The cascade, on
the other hand, requires the same excitation to go up and
down the ladder and thus demands that

lim
τ→0
τ<0

g
(2)
2,1(τ) = 0 (28)

which is the counterpart of Eq. (10) satisfied also by
Eq. (23) and the low-driving approximation (25). Since,
on the other hand

lim
τ→0
τ>0

g
(2)
2,1(τ) = 1 +

(
1

γ0
+

1

γ1

)
γ2 (29)

(with limits 1 + γ2

γ0
for low (26) and 1 + γ2

γ1
for high (27)

pumping, respectively), there is again the discontinuity
at τ = 0, as is also the case in the phenomenological
model and in the more general cascade (11). This would
be resolved with a photo-detection theory [36]. Lifting
the degeneracy of the relaxation rates show that the dis-
continuity (11) is the smallest that can be, and that
large γ2 or small γ0 and/or γ1 result in strong discontinu-
ities, as the cascade is rarefied as compared to its Poisson
occurence. It is interesting, in this regard, to consider
the opposite limit which tames down the correlations,
as shown in Fig. 5, where one sees that the decorrela-
tion of the heralded photon in the cascade, comes at the
cost of strong correlations in the wrong order, i.e., of the
heralding one instead, despite the perfect suppression of
coincidences from Eq. (28). This realizes a “backward-
cascade” where the detection of photons from the sup-
posedly “heralding” transition tells us nothing about the
subsequent transition of an heralded one, which are thus
detected randomly in time, while such a transition effec-
tively “heralds its heralder”, i.e., the photon from the
prior transition is in fact emitted shortly and strictly af-
terwards (in the wrong time order and never at the same
time). That is because it is, of course, the next heralder,
but this fact does not transpire in the emission and such a
“feature” would not be easy to achieve otherwise. Revers-
ing the detectors with Eq. (8), one thus has uncorrelated
heralders heralding slightly delayed photons. We thus
have a recipe to implement closely the phenomenological
cascade of Eq. (25), would that be requested.
Finally, would we consider the N = 3 case not as a

two-photon cascade from the three-level system, but as
the generic circular cascade of Fig. 1(b) where all tran-

sitions can be correlated, then g
(2)
0,0 is given by Eq. (21)

and the cross-correlations are similarly given by Eq. (23)

with rotation of the parameters, namely, g
(2)
1,0 is obtained

from the substitutions (γ0, γ1, γ2) → (γ2, γ0, γ1) and g
(2)
0,2

from the substitutions (γ0, γ1, γ2) → (γ1, γ2, γ0), while
the other orders follow from Eq. (8). These correlations
behave qualitatively as discussed in Fig. 1 but lifting the
degeneracy of the transition rates and with similar en-
hancement and distortions of their correlations. This
shows that non-degenerate decay rates do not enlarge
the number of possible traces.
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FIG. 5. Two-photon cascade in a three-level system
with unbalanced rates (thick solid line, with (γ1, γ2)/γ0 =
(1.1, 0.025)), resulting in a markedly different correlation
function (compare with all rates equal to the mean γ ≈ 0.71γ0
as the dashed thin line). The heralded photon is uncorre-
lated with the heralding one, while the opposite transition is
strongly bunched at small negative delays, though still obey-
ing the constrain (28) at τ = 0. Similar strong departures are
expected for the general N case. These parameters satisfy
Eq. (24) so the functions are forever oscillating, although this
is not visible on a linear scale.

VI. DISCUSSION AND CONCLUSIONS

We have provided a theory of circular quantum cas-
cades, whereby a level can be excited from one direction
only. While this seems to differ little from widespread
and thoroughly studied two-way cascades, where the
state can be excited from “above” (by relaxation) or from
“below” (by excitation), this actually presents a consid-
erably richer dynamics, able to endow the system with
strong correlations that are washed away in other cases
by breaking down the ladder into a succession of pairwise
cascades. Indeed, although the formalism to describe cir-
cular cascades brings little novelty from those developped
to describe other types, the nature of the solutions—
developing all-time oscillations under incoherent excita-
tion of the system—make a dramatic departure from the
mere relaxation regimes previously discussed. From the
comprehensive description of all the possible traces for
the various combinations of transitions that can be cor-
related (which to the best of our knowledge remains to
be similarly classified for traditional cascades), we high-
lighted how autocorrelations surprisingly recover highly-
sought regimes of photon phase transitions, such as those
realized in large ensemble of coupled optical cavities [47–
49]. These implementations have been described as a
“complex architecture [that] represents a considerable ex-
perimental challenge” by an EIT Rydberg group seeking
similar correlations [31], also praising the Rydberg out-
of-equilibrium character and its facility to transfer them
to the optical field. Our mechanism can make the same
remarks on the EIT Rydberg platform: the cascaded sys-
tem is much more straightforward experimentally, being
in principle available with a single multi-level emitter, it
also needs no equilibrium, in fact not even coherent driv-
ing, and cares little about underlying details of the excita-

tion, and it is directly and intrinsically built into the op-
tical field. This challenges the previously held view that
the “formation of a Tonks–Girardeau gas of photons is
fundamentally a collective many-body effect” [31]. This
in fact emerges as a much more fundamental and uni-
versal feature of the optical field itself, regardless of the
underlying mechanism which produces it, that we iden-
tify as that of good single-photon emission. Neverthe-
less, the coupled cavities and Rydberg EIT physics being
deeply rooted indeed in strongly-correlated many-body
physics—whose photon correlations are directly linked to
the pair correlation function of the Lieb-Liniger gas [50],
where they are interpreted as Friedel oscillations [51]—
this gives further credence to our earlier suggestions of a
condensed-matter, thermodynamically inspired descrip-
tion of the optical field [27]. In our case, photons are
not interacting, they merely inherit or imprint correla-
tions that are those of a liquid, so even the denomination
of “liquid light” might not be entirely correct and one
should instead speak of liquid time, since this is properly,
and maybe exclusively, the ticks in time that exhibit the
features, not its carriers. Another striking demonstration
of the might of circular cascades is their built-in ability
to generate CW N -photon bundles, for any integer N
and with no fundamental restriction on the bundle pu-
rity, which appear to also provide considerable improve-
ment on their cavity QED counterparts. At any rate,
proper attention to such potentialities and thus the ex-
ploitation of the wonders they promise, will require the
experimental feasibility of such cascades. It is beyond
the scope of this text to devise a microscopic system to
achieve that, although we reiterate that in our view, de-
spite the physical constraints on relaxation rates in N -
level quantum systems [52], this seems a much simpler
task than those involving strongly-correlated many-body
platforms driven in extreme regimes. We can imagine
several “poor man”’s solutions to the problem, includ-
ing pulsed excitation to avoid re-excitation or coherent
driving to isolate the γ0 transition from the others. In
such cases, however, there would be the risk of mistak-
ing the oscillations for those imparted by the driving it-
self [53, 54]. With the onset of chiral quantum optics [55]
and topological photonics [56], we have no doubt that re-
sourceful inventors can find a faithful implementation of
a genuine one-way one-photon (or one-quantum, in other
platforms) cascade, with the result of producing not one,
but a variety of stationary quantum light, yet so strongly
correlated that they locally appear to be pulsed.

From our side, rather than indulging into such designs,
we wish to conclude with the reiterated observation that
the current theory of circular cascades, as well as, inci-
dentally, those describing other types of cascades, rely on
correlating transitions, as opposed to correlating detected
photons. We believe that much physics and further engi-
neering await to be revealed by applying the sensor for-
malism [36] to photon cascades—circular or traditional—
with the effect of removing undesirable artifacts such as
discontinuities in the correlation functions, taking more
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seriously photon indistinguishability as well as interfer-
ences, and, not least, providing a complete leapfrog (off-
peak) picture of the transitions [57], also placing the ob-
servation at the heart of the process, thereby showing
that quantum jumps and quantum cascades are two faces
of the same coin. We hope to provide such a complete
description soon.
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