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Ising machines are an emerging class of hardware that promises ultrafast and energy-efficient so-
lutions to NP-hard combinatorial optimization problems. Spatial photonic Ising machines (SPIMs)
exploit optical computing in free space to accelerate the computation, showcasing parallelism, scal-
ability, and low power consumption. However, current SPIMs can implement only a restricted class
of problems. This partial programmability is a critical limitation that hampers their benchmark.
Achieving full programmability of the device while preserving its scalability is an open challenge.
Here, we report a fully programmable SPIM achieved through a novel operation method based on the
division of the focal plane. In our scheme, a general Ising problem is decomposed into a set of Mattis
Hamiltonians, whose energies are simultaneously computed optically by measuring the intensity on
different regions of the camera sensor. Exploiting this concept, we experimentally demonstrate the
computation with high success probability of ground-state solutions of up to 32-spin Ising models on
unweighted maximum cut graphs with and without ferromagnetic bias. Simulations of the hardware
prove a favorable scaling of the accuracy with the number of spin. Our fully programmable SPIM
enables the implementation of many quadratic unconstrained binary optimization problems, further
establishing SPIMs as a leading paradigm in non von Neumann hardware.

Ising machines (IMs) are specialized devices designed
to solve quadratic unconstrained binary optimization
(QUBO) problems by finding the ground state of the
corresponding Ising model [1]. IMs harness physical ef-
fects exhibited by the underlying system as a mechanism
to accelerate the ground state search. Spatial photonic
Ising machines (SPIMs) encode Ising spins in the optical
phase and exploit spatial light modulation and coherent
optical propagation in free space to compute optically
the value of the Ising Hamiltonian [2]. Taking advantage
of the spatial parallelism [3], as well as the high resolu-
tion of spatial light modulators (SLMs) and low-intensity
continuous-wave lasers, SPIMs showcased parallel opera-
tion, energy efficiency, and scalability [2]. A key issue
concerns their programmability, i.e., the capability to
program the spin interaction matrix to realize any QUBO
problem. The first SPIMs could not map graphs with
arbitrary connections. This partial programmability re-
stricts the class of problems that can be implemented [4].
Recently, many approaches have been pushed forward to
extend the range of applicability of SPIMs [5–18]. Among
them, Z. Ruan and co-authors [12, 13] developed the

∗ daniele.veraldi@uniroma1.it
† davide.pierangeli@roma1.infn.it
‡ claudio.conti@uniroma1.it

so-called Gauge method that allows a simple program-
ming of the so-called Mattis Hamiltonian (rank-1 inter-
action matrices). By exploiting the Gauge encoding, a
SPIM implementing full-rank coupling matrices has been
demonstrated through their decomposition over multiple
wavelengths [18]. However, this wavelength-division mul-
tiplexing scheme requires as many wavelengths as spins
and suffers from chromatic dispersion, factors that limit
its scalability. Achieving full programmability in SPIMs
while maintaining scalability remains an open challenge.

In this Letter, we present and experimentally demon-
strate a new SPIM based on focal plane division (FPD)
to solve any Ising model while preserving scalability.
The scheme uses a single SLM in a novel configuration
to decompose any Ising problem into a set of Mattis
Hamiltonians that are computed in parallel by divid-
ing and measuring the optical intensity on separate re-
gions of the camera sensor. This new arrangement of
the setup enhances the computing capability of SPIMs
by enabling the exploitation of the additional spatial de-
grees of freedom of the focal plane. We experimentally
demonstrate ground state solutions of different types of
graphs: Möbius ladder, Max-Cut, and Max-Cut with a
ferromagnetic (FM) bias with 16 and 32 spins, with a suc-
cess probability of 95%, 50%, 55%, and 10%, respectively.
We compare simulations of the hardware with simulated
annealing (SA), showing that the device accuracy scales
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FIG. 1. SPIM by focal plane division. (a) Schematic of the
SLM screen division. The same spin configuration σ is en-
coded in each row. We apply the Gauge encoding to imple-
ment each Mattis Hamiltonian Hk on each row. (b) Intensity
detected in the focal plane. By using blazed gratings, we per-
form a division of the focal plane to separate the signals of
different Hk. (c) Sketch of the experimental setup. The spin
energy is evaluated by the measured intensities [I1, ..., IK ].
The ground-state search operates by updating via digital feed-
back σ on the SLM according to the measured energy and a
SA algorithm.

favourably the number of spins. Our fully programmable
SPIM allows photonic computation of many QUBO prob-
lems.

The Ising model is defined by the Hamiltonian

H (σ) = −1

2
σTJσ (1)

with spin configuration σ = [σ1, ..., σN ] and σi = ±1, N
the number of spins, and symmetric real-valued interac-
tion matrix J . A fully programmable IM thus requires
N2 programmable units. Most SPIMs [7, 12] realized
and solved Eq. (1) with rank(J) = 1. These Mattis-
type interactions are characterized by the outer product
J = ξξT . We decompose the interaction matrix of a
general Ising problem into a linear combination of Mat-

tis problems J =
∑K

k=1 λkξkξ
T
k , so that

H (σ) = −
K∑

k=1

λkHk (σ) = −1

2

K∑
k=1

N∑
i,j=1

λkξikξjkσiσj (2)

Therefore, a SPIM capable to implement the Mattis
Hamiltonian Hk can process a full-rank Ising prob-
lem (K = N) when operating through a multiplexing
scheme [16]. To encode each Hk in the optical field, we
exploit phase-only encoding by the Gauge transforma-
tion method [12, 13]. Through this transformation we
pass from binary to circular spins that encode also the

interaction by continuous phase values. The coupling co-
efficients −1 ≤ ξik ≤ +1 are encoded by introducing a
rotation of the Ising spin. The Gauge map rotates each
spin σi by an angle αik = arccos(ξik) with respect to the
z-axis to obtain the spin vector σ′. The z-component
σ′z
ik = ξikσi is the effective spin that is encoded. The

Mattis Hamiltonian remains invariant under this trans-
formation [12], allowing to implement Hk by using the
sole optical phase.
To experimentally realize a fully programmable SPIM,

we design a FPD method to compute simultaneously all
theHk by a single-shot intensity measurement. We apply
an eigen-decomposition to the target J and use the eigen-
vectors to define the coupling strengths λk in Eq. (2). As
illustrated in Fig. 1(a), to optically compute in parallel
all the Hk, we divide the SLM screen in K rows. Each
row contains the same Ising spin configuration σ. We
then apply a different Hk to each row by Gauge encod-
ing, i.e. we encode the i-th effective spin of the k-th
row according to ξik. Ising spins are mapped into phase
delays ±π/2. On the SLM, each spin corresponds to a
macropixel made by c = Px × Py pixels that is phase
modulated as

ϕl
ik = σi

π

2
+ (−1)lαik, (3)

being σ′z
ik = exp (iϕl

ik), where l is the pixel index along
the x-axis of the SLM (1 < l < Px) and the rotation
angle αik is applied to the i-th spin of the k-th row.
Equation (3) is derived in Refs. [12]. Each macropixel
thus encodes information both on the spin and its inter-
actions. The division by rows is an optimal method to
exploit the SLM plane. Specifically, we are programming
N2 coefficients by a single SLM, in analogy with optimal
schemes for optical vector-matrix multiplications [19].
To measure the optical intensity associated to eachHk,

we analyze by a camera the intensity distribution of the
propagated beam in the Fourier plane. Fig.1(b) reports
an experimental image showing the intensity on the focal
plane. We use a combination of a cylindrical lens and
digital blazed gratings to ensure no mixing between the
signals of different rows and to spatially separate the in-
tensities Ik along the y-axis of the camera sensor. Each
Ik gives a measurement of the energy of Hk for a given σ.
Note that Ik presents multiple internal spots [Fig.1(b)],
which result from diffraction from the periodic compo-
nents of the SLM phasemask. Therefore, we first identify
the position of the k-th focal spot (intensity maximum)
and then integrate the signal within a rectangular region
of interest (3 × 50 camera pixels) to accurately measure
the set of Ik. The optical Ising energy is evaluated as
F =

∑
k λkIk.

The experimental device is illustrated in Fig. 1(c).
A linearly-polarized continuous-wave 100 mW laser at
λ = 532 nm is expanded on a phase-only SLM (Hama-
matsu LCOS-SLM X15213S). The phase modulation in
Eq. (3) is applied by using 213 levels of precision within
the interval [0, 2π]. The SLM operates with a mea-
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FIG. 2. Ground-state accuracy of the SPIM by FPD with N = 16 for (a) Möbius ladder, (b) Max-Cut and (c) Max-Cut with
ferromagnetic bias. The energy histograms show a ground state probability of 95%, 50% and 55%, respectively. Insets shows
the optical energy F and the value of the Ising Hamiltonian during an experimental run.

sured diffraction efficiency of 0.005. The phase modu-
lated beam is imaged by a cylindrical lens (focal length
f = 150 mm, numerical aperture NA= 0.1) on a 12-bit
CMOS camera (Basler a2A2590-60umPRO). The total
optical power impinging on the camera is 0.05 mW.
We experimentally validate the fully programmable

SPIM by evaluating its performance in finding the ground
state of various Ising problems for N = 16. We select a
macropixel size of 18×18 pixels, chosen to maximize the
computational accuracy. The ground state search is con-
ducted by using digital feedback to recurrently update
the spins according to a Metropolis-Hasting algorithm
fed by the optical energy F . During the machine run,
the spin temperature is varied via a SA algorithm im-
plemented following Ref. [20]. We choose three types of
graphs that are widely used as benchmarks for IMs [1]:
Möbius ladder, Max-Cut and Max-Cut with FM bias (bi-
ased). Möbius ladder is a circulant graph where every
spin interacts antiferromagnetically Jij = −1 with its
nearest neighbours and the diametrically opposite spin.
For the considered Max-Cut graphs, the Jij are extracted
randomly among 0 and −1 with 0.5 probability. The
Max-Cut with FM bias is a complete random binary
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FIG. 3. Accuracy of the SPIM by FPD for N = 32 on fully
connected biased Max-Cut graphs. Energy distribution of the
experimental and SA solutions (Psuc = 10%).

graph defined by setting Jij = ±1 with 0.5 probabil-
ity. Figure 2 shows the computing result for each graph
over 20 machine runs with different initial conditions.
Convergence is achieved on the order of 102 iterations.
We compare the experimental solutions with a SA al-
gorithm [20]. The success probability Psuc is calculated
with respect to the best SA solution. We obtain the
ground state with Psuc of 95%, 50% and 55%, respec-
tively. This performance difference reflects the fact the
Möbius ladder is polynomially solvable, while Max-Cut
graphs are classified as NP-hard [21, 22]. We remark that
also the SPIM operates through SA but using the opti-
cally energy F . Both SA hyper-parameters have been fine
tuned to achieve optimal results. To ensure the agree-
ment between the experimental energy F and the corre-
sponding Ising Hamiltonian, we monitor these quantities
while the machine is running. As shown in Fig.2, they
are anticorrelated at every iteration despite experimental
noise, proving the correct operation of the SPIM during
the optimization.

To prove the scalability of the FPD scheme, we scale
up the experimental device and implement larger fully
connected graphs. The macropixel size c is the key fac-
tor to scale up our SPIM. The number of SLM pixels
required for general problems of size N scales as c×N2,
with c that is tunable within a range that depends only
on the experimental setup. By reducing the macropixel
size to c = 9× 9 pixels, we implement 32-spin fully con-
nected biased Max-Cut graphs (1024 programmable cou-
plings). This scale is two times larger than achieved by
wavelength-multiplexed SPIMs [18] and competes with
photonic and electronic state-of-the-art IMs that have
full programmability without relying on digital hardware
to implement the interactions [15, 23]. Figure 3 reports
the obtained energy histogram in comparison with SA.
We achieve Psuc = 10% and a good agreement between
the two energy distributions. The performance drop is
due to the lower signal-to-noise ratio on the focal plane
when reducing the macropixel. This limitation can be
overcome by improving the NA and dynamic range of
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minimum is shown by increasing N . Shaded areas represent the interquartile range over 100 different random graphs.

the imaging system.

To assess further the scalability, we conduct simula-
tions of the SPIM up to N = 100 on the same tpye of
graphs of the experiments. Figure 4 shows the energy his-
togram for N = 100 compared with SA. For the Möbius
ladder, Max-Cut, and Max-Cut with FM bias, we obtain
a Psuc of 18%, 18% and 13%, respectively. In all three
cases, the accuracy of the simulated device matches the
SA performance. This indicates that the SPIM can per-
form optimizations with accuracy comparable to heuris-
tic algorithms. Fig. 4 also reports Psuc at different N ,
along with the probability of finding low-energy states
within a% of the energy minimum. For large N , approx-
imate solutions are found with high probability and a
favourable scaling. We test 100 random graphs and sim-
ulate 20 SPIM runs for graph. The interquartile ranges
show that distinct graph instances have a different im-
pact the convergence. The effect, related to the hardness
of Max-Cut and biased Max-cut graphs, has been also
observed in coherent IMs [24] on 16-spin cubic graphs as
a graph-dependent Psuc distribution.

We analyze the possible advantage of our SPIM over
digital hardware and other IMs in terms of the expected
computation time and energy efficiency. We estimate the
SPIM run time as τrun = τiterNiter = τSLMαN , where τiter
is the iteration time, Niter the number of iterations, τSLM
the SLM response time, and α is a parameter tunable by
the annealing schedule. The resulting time-to-solution [1]
reads as τsol = τSLMαN [ln(0.01)/ ln(1− Psuc)]. The per-
formance of our proof-of-concept are limited by the 60 Hz

SLM frame rate (τSLM ≈ 0.02 s). By considering electro-
optic SLMs with frame rates > 1 GHz that are under
development [25], we get τsol ∼ 10µs on 100-spin biased
Max-Cut (Psuc from Fig. 4). This value compares with
the τsol ≈ 30µs of the best performing digital architec-
tures [26]. At N = 104, the estimated τSLM to compete
with specialized digital hardware becomes τSLM ∼ 10−5

s, i.e. only one order of magnitude smaller than off-the-
shelf MEMS-based SLMs [27]. This shows the favourable
scaling of τiter of SPIMs vs digital computing, i.e. the so-
called optical advantage [5]. When comparing with the
performance of coherent IMs on biased Max-Cut [28, 29],
we find that our SPIM is competitive for τSLM ∼ 10−7s
(10−5s) at N = 100 (1000). As for energy efficiency,
our SPIM has low power consumption: it works by using
10mW of optical power and overall consumes Ptot = 50
W (coherent IMs have Ptot ∼ 1 kW [30]). We esti-
mate the energy-to-solution as Esol = Ptotτsol, which
gives Esol ∼ 0.1 mJ for 100-spin Max-Cut (comparable
with predictions for opto-electronic IMs [31, 32]). At
this scale, the most energy-efficient IMs that are based
on memristors [33, 34] and stochastic electronic oscilla-
tors [35, 36] have a predicted Esol ∼ 100 nJ. Importantly,
while for these IMs Ptot will grows considerably with N ,
for our SPIM Ptot is independent of the machine scale.
This property suggests a possible advantage at a large
scale also in energy efficiency.

Our fully programmable SPIM can reach large scales
by shrinking further the macropixel and employing more
SLM pixels. In our setup, we use a only central por-
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tion of the SLM (300 × 300 pixels) to avoid aberrations
and vignetting that affect the accuracy. By exploiting
the entire SLM screen via optics with larger NA, we can
accommodate more than 100 all-to-all connected spins
already by the demonstrated macropixel size. Available
high-resolution SLMs (10M pixels) within an engineered
imaging setup would allow us to realize more than 1000
spins readily by using modes of c = 16 pixels, indicating a
promising route to reach an advantage in computational
performance.

In conclusion, we have demonstrated a fully pro-
grammable and scalable SPIM based on the division of fo-

cal plane. The device is simple, algorithm-agnostic, low-
cost and compact by using low-power monochromatic
light and phase-only modulation by a single SLM. Our
work provides an advantageous method to optically ac-
celerate the computation of QUBO problems.
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