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We report the observation of a two-dimensional dam break flow of a photon fluid in a nonlinear
optical crystal. By precisely shaping the amplitude and phase of the input wave, we investigate
the transition from one-dimensional (1D) to two-dimensional (2D) nonlinear dynamics. We observe
wave breaking in both transverse spatial dimensions with characteristic timescales determined by
the aspect ratio of the input box-shaped field. The interaction of dispersive shock waves propagating
in orthogonal directions gives rise to a 2D ensemble of solitons. Depending on the box size, we report
the evidence of a dynamic phase characterized by a constant number of solitons, resembling a 1D
solitons gas in integrable systems. We measure the statistical features of this gaseous-like phase.
Our findings pave the way to the investigation of collective solitonic phenomena in two dimensions,
demonstrating that the loss of integrability does not disrupt the dominant phenomenology.

Optics in nonlinear media provides a unique field to
investigate nonlinear statistical phenomena such as dis-
persive shock waves (DSWs) [1], Fermi-Pasta-Ulam re-
currences [2–4], chaos [5], and replica symmetry break-
ing [6]. The study of the collective dynamics of nonlinear
waves, such as the formation of a soliton gas (SG) [7–11],
is a frontier with significant applications from supercon-
tinuum generation to neuromorphic computing [12–14].
However, experimental investigations have been limited
to one-dimensional (1D) waves. The difficulties in high-
dimensional experiments are due to the collapse and the
modulation instability that dominates the generation of
soliton ensembles. Theoretical results are also limited
by the lack of integrability. Nevertheless, the study of
hydrodynamic regimes in quantum photon fluids [15–
25] triggers intense research on the complex dynamics of
solitons in the framework of the nonlinear Schroedinger
equation (NLS). The NLS is well approximated by hy-
drodynamic models with a quantum pressure, which dis-
tinguishes classical from quantum fluids [26].

In this context, the dam break flow is a paradigm for
the emergence of highly nonlinear phenomena. Theoret-
ical works [27, 28] have shown that the asymptotic state
of a 1D dam break flow is a SG. The SG, introduced by
Zakharov [29], is an ensemble of interacting solitons with
a random distribution of phase and amplitude [30, 31].
Integrability is fundamental for the definition of SG con-
cept. For this reason, to date, experimental evidence of a
SG has been reported only in hydrodynamic or nonlinear
optical platforms that approach a 1D system [7–11].

In this Letter, we report the first experimental obser-
vation of a two-dimensional (2D) dam break flow. An
engineered 2D coherent optical wave undergoes the dam
break by propagating in a photorefractive crystal. The
complete control of the input waveform gives access to
the transition from the 1D to the 2D regime, unveiling the
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crucial role of the second spatial dimension in the wave-
breaking. We exploit the multi-dimensional interaction
of 1D shocks colliding in orthogonal directions to trigger
a soliton-generating transition. We reveal two nonlinear
scales: the first regards the 1D wave breaking, the sec-
ond the collision of DSWs and the evolution into a 2D
ensemble of solitons. The agreement with the soliton ex-
istence curve proves the solitonic nature of the observed
localized modes. We observe a steady state with a well-
defined number of solitons, dependent on the box size,
suggesting the presence of a gaseous phase of solitons [32].
This is an unexpected result because the SG concept is
strictly related to an integrable nonlinear model, while in
non-integrable dynamics the expected asymptotic state is
the coalescence of the soliton ensemble. Hence, our ob-
servations raise the question if a definition of a 2D SG
is possible. Despite our experiments being far from in-
tegrable regimes, we report a nearly thermalized state
in which the soliton number is conserved and the inten-
sity probability distribution function (PDF) follows an
exponential law compatible with the statistics of a 1D
SG. Our evidence of a dynamical phase of solitons with
gaseous features can stimulate further experimental and
theoretical research.

A sketch of our setup is reported in Fig.1(a). The
wavelength of the continuous-wave laser is λ = 532 nm.
We implement a novel waveform shaping system for the
preparation of the initial condition, composed of a phase-
only spatial light modulator (SLM), a filter in Fourier
space made by two bi-convex lenses in 4-f configuration
(100mm focal length) with a precision pinhole (500µm
diameter), and a large-area objective (0.1 magnifica-
tion ratio) to demagnify the beam. Beam propagation
(10mW power) occurs in a photorefractive crystal of SBN
(Srx Ba(1−x) Nb2O6, with x = 0.61) of size 5×5×5mm3,
where the nonlinearity is induced by an external electro-
static field via a high-voltage power supply. The optical
field at the crystal output facet is imaged onto an inten-
sity camera. Waveform shaping is based on the interfer-
ometric method reported in Refs. [33, 34], enabling the
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FIG. 1. Coherent shaping of the 2D input wave. (a) Ex-
perimental setup. The laser beam is shaped in amplitude
and phase by a system made by a SLM, two lenses (L), a
pinhole (PH), and a de-magnification objective (OBJ). The
beam propagates in a biased photorefractive crystal (SBN)
and the output intensity is detected by a camera (CCD). (b)
Intensity distributions for three box-shaped initial conditions
of different heights wy. I0 is the mean intensity over the box.

encoding of a complex field by a single phase-only SLM.
The technique allows us to generate a 2D coherent beam
of arbitrary shape. We obtain a fully programmable ini-
tial wave with micrometric spatial resolution. This solves
a challenging problem in wave optics, enabling complete
control of nonlinear optical propagation in crystals.

Exploiting the programmability of the input waveform,
we implement a box-shaped initial condition whose side
lengths can be independently varied. This allows us to
explore the role of dimensionality in the dam break flow
and the transition from a 1D to a 2D regime. We con-
sider as input waves three boxes of width wx = 300µm
and different heights wy: w1 = 50µm, w2 = 100µm
and w3 = 150µm. The box shape is generated as a su-
pergaussian beam with a flat phase (see Supplementary
Material [35]). The experimental realization of this initial
condition [Fig.1(b)] presents intensity fluctuations due to
inhomogeneities in beam shaping. Intensity fluctuations
have been included in our numerical simulations as an
additive white noise η(x, y).
As detailed in the Supplementary Material [35], the non-
linear response of the photorefractive crystal is due to
a space charge field generated by the combined effect of
the external field and the impinging beam intensity. This
process produces a time-dependent variation of the re-
fractive index n(I, t) = n0+δn(I, t). For tetragonal SBN,

the nonlinear index variation is δn(I, t) = δn0
f(t)

(1+ I
Is
)

where δn0 contains the external field and the linear
electro-optic coefficients. Is is the saturation intensity
related to the background illumination, and f(t) is the
charge accumulation function [36]. The nonlinear prop-
agation of the optical field is described by a generalized
2D NLS equation with a focusing Kerr-saturable nonlin-
earity

2ik ∂zA+ ∂2xA+ ∂2yA+ 2k2
δn(I, t)

n0
A = 0 (1)

where k is the wavenumber. In the experiments, the
beam is observed at the crystal output (z = 5mm, ap-
plied voltage 800 V) as a function of time t. According
to Eq.(1), the spatial propagation in the z-direction can
be mapped into a time evolution at a fixed z-distance by
a dimensionless time-dependent propagation variable [8]
(see Supplementary Material [35]). We support exper-
imental observations with numerical simulations. Nu-
merical results are obtained from Eq.(1) in dimension-
less form for a box-shaped initial condition with noise
|η| ≪ A0. Simulations provide the beam propagation in
space at a fixed evolution time (nonlinear coefficient).

Figure 2 shows the observed and simulated evolution
of the three input boxes in Fig.1(b). The boxes break up
in a multiple-soliton structure. The agreement between
the measured and simulated intensity is found at the di-
mensionless distance z′ = 10, validating the matching
between the model and the experiment. Fig.2(a) reports
the results for the thin stripe (wy = w1) mapping the
1D system. As expected for the dam break problem [27],
the breaking occurs along the x-axis. The two input dis-
continuities form a pair of DSWs that collide generating
a 1D SG after t = 17 s. Increasing wy causes an addi-
tional breaking along the y-axis. We observe the forma-
tion of an ensemble of 2D solitons with random intensities
that are distributed in space on multiple rows [Fig.2(b)-
(c)]. The height of the box is crucial in governing the 2D
breaking process. When wy is small (wy ≃ 50µm) the
dynamics is 1D, while, above a threshold height, the long-
time evolution shows the formation of soliton ensemble
occupying the entire 2D region of space set by the in-
put box size. We distinguish two key processes: first, a
wave breaking that occurs independently along the two
orthogonal dimensions and, second, the interaction of the
generated solitons. In the early stages of the breaking,
DSWs are generated at the box corners. Then, the break-
ing proceeds along x from the edges to the center of the
box. This dynamics strongly differs from the genera-
tion of a 1D SG by noise-seeded modulation instability,
where solitons of variable amplitude and velocity emerge
in random positions over the constant background [31].
We identify the breaking geometry from the space re-
gion occupied by the DSWs generated at the boundary.
The intensity profiles, averaged over designed regions of
interest, identify different rows along which the break-
ing occurs. The number of breaking rows increases with
the box height. From the profiles in Fig.2, two features
emerge: the lack of breaking along y in the 1D case and
the random distribution of the peaks along x in the 2D
case. This non-periodic profile with localized modes is a
key feature of a random set of solitons. By investigating
the relation between the width and the peak intensity
of each mode, we prove the solitonic nature of the 2D
localized modes through the observation of the soliton
existence curve (see Supplementary Material).

To understand the collective solitonic phase, we eval-
uate the number of generated solitons. Due to the non-
integrability of Eq.(1), the soliton number is expected to
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FIG. 2. Two-dimensional dam break flow of a photon fluid. Input and output intensity distributions for boxes with heights:
a) w1 = 50µm, b) w2 = 100µm, c) w3 = 150µm. Intensity is normalized to the mean input intensity I0. Numerical results at
z′ = 10 closely match observations at the crystal output (z = 5 mm) for t = 17 s. Experimental intensity profiles along x and
y are averaged over the dotted boxes.

decrease during the evolution due to inelastic collisions.
Differently, the number of solitons at different times after
the formation of the ensemble presents only minor oscil-
lations around a mean value. The measured evolution of
the number of solitons is inset in Figure 3. Soliton fusions
are not observed in the experimentally accessible times
because the solitons propagate mainly in the forward di-
rection (see Supplementary Fig. 2). The conservation of
the number of solitons contrasts with a soliton-merging
picture indicating the presence of a gaseous phase of 2D
solitons.

Figure 3 reports the soliton number for boxes of dif-
ferent heights and box width wx = 300µm. The soliton
number depends on the total area of the box. However,
its variation by changing the aspect ratio furnishes fun-
damental information about the breaking process: (i)
there is a sharp jump at the transition from 1D to 2D
dynamics, with the number of solitons that doubles for
wy/wx ≃ 1/4; (ii) the breaking process occurs by rows,
as demonstrated by an additional jump where the soli-
ton number triples with respect to the 1D case; (iii)
the formation of breaking rows is observed as far as the
side lengths of the box are significantly different. For
wy/wx ≥ 0.4, the soliton number increases linearly with
the box area. This condition corresponds to a breaking
process occurring simultaneously along x and y.

The breaking of the box occurs independently in the
two directions on a time scale proportional to the side
length. When the lengths are different, the short side

=300

Simula�on

Experiment

FIG. 3. Number of solitons (mean) that emerge from the
breaking of boxes of different heights in experiments and sim-
ulations. Numerical data are averaged over different noise re-
alizations. Inset: soliton number as a function of the evolution
time (experimental data). The plateau indicates a steady-
state with a constant number of solitons.

breaks much faster than the long side, causing the break-
ing by rows. The experimental observation of this behav-
ior is reported in Fig.4. The aspect ratio wy/wx deter-
mines the difference between the breaking timescales and
the soliton number. Fig.4(a) shows the time evolution of
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the box with wy = w2. We define the breaking time tBx

as the instant of the shock collision along x. We mea-
sure tBx as the point where the emerging peak reaches
the maximum intensity (collision point). We derive the
propagation speed of the DSWs as vS = wx/(2tBx) [8],
which gives the shock trajectories shown in Fig.4(a). The
time evolution of the short side [Fig.4(a)] shows that the
breaking does not involve DSWs but the formation of two
coherent structures that propagate keeping their wave-
form. We define the corresponding breaking time tBy as
the instant of soliton formation. We find that tBx > tBy,
resulting in the formation of two breaking rows. Fig.4(b)
shows the time evolution of the box with wy = w3. Both
sides break up through the collision of shocks with similar
velocity. tBx and tBy have comparable values (simulta-
neous breaking). The intensity evolution observed along
each direction is consistent with the inverse-scattering so-
lution of a 1D box [37], where the number of emerging
solitons is proportional to the box width.

To characterize the gaseous phase of 2D solitons, we
analyze its statistical properties. As evident in Fig.2, the
field evolution is confined to the 2D region occupied by
the input box, the gas volume. We evaluate the intensity
statistics of the soliton ensemble in the gas volume for
wy = w3. The intensity PDF normalized to the mean
intensity is reported in Fig. 5. Experimental and numer-
ical data are well-fitted by a single exponential distribu-
tion. This distinguishes our collective state from peri-
odic structures originating from modulation instability.
An exponential PDF characterizes a variety of complex
fields. In the SG context, the exponential behavior is
expected for a dense 1D SG with low velocity [38]. Our
2D soliton phase shows this feature. We report in Fig.5
the measured kurtosis during the time evolution, which
presents a significant increase and reaches a value close to
the κ = 2 at the steady state as expected for an exponen-

tial PDF. The saturation of the kurtosis denotes the con-
servation of the soliton number, confirming the absence
of soliton coalescence. We remark that the exponential
PDF is spontaneously reached and not synthesized via
the initial condition, suggesting a thermalization-like pro-
cess during the beam evolution. The statistical analysis
supports the observation of a gaseous phase of 2D soli-
tons with a PDF exhibited also by 1D SGs.

In conclusion, our investigation reveals the dynamics
of a 2D dam break flow within a multi-dimensional pho-
ton fluid along with the spontaneous formation of a 2D
gaseous phase of solitons. The observation of the collision
of orthogonal DSWs with distinct breaking points dis-
closes the key role of dimensionality in the wave-breaking
and forms the mechanism for the formation of the gaseous
phase. Through the controlled manipulation of the input
wave, we have explored the transition from a 1D regime,
characterized by solitons moving in a single direction, to
a 2D scenario where solitons disperse and interact across
the entire available space. The 2D nature can also intro-
duce soliton fusions into intense waves [39]. Nevertheless,
we have found the emergence of a gaseous phase charac-
terized by a constant number of solitons. Our findings
suggest that the loss of integrability in two dimensions
does not destroy the phenomenology of the SG, in anal-
ogy with the universality of other analytical soliton so-
lutions [40]. As a consequence, the work leaves an im-
portant open question about the possibility of defining a
multi-dimensional SG in a non-integrable system. From
an application perspective, the complexity of the 2D SG
can be exploited for enhanced functionalities in wave-
based neuromorphic computing [12–14].

We acknowledge support from the European Innova-
tion Council (EIC) under the project HEISINGBERG
(No. GA 101114978).
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Supplementary Note 1. Supergaussian beam shaping

The box-shaped initial condition is prepared by shaping the optical field as a supergaussian with a flat phase.
Letting the optical field E(x, y, z) = A(x, y, z)eiϕ(x,y,z), the input writes as

A(x, y, 0) = A0 exp

[
−
(

x

wx/2

)20

−
(

y

wy/2

)20
]
, (1)

and ϕ(x, y, 0) = 0. wx,y are the supergaussian widths, corresponding to the box width and height.

Supplementary Note 2. Saturable Kerr nonlinearity in photorefractive crystals

In our experiment, nonlinear optical propagation occurs in a non-centrosymmetric photorefractive crystal, SBN61.
The medium nonlinear response is due to a space charge field ESC , generated by the combined effect of an external
electrostatic field and the beam intensity. The space charge field generates an intensity-dependent variation in the
refractive index n(I, t) = n0 + δn(I, t) which is also time-dependent due to the charge dynamics inside the crystal.
According to the paraxial approximation of the optical field E(x, y, z, t) = A(x, y, z)e(ikz−iωt), the propagation is
described by the well-known generalized 2D nonlinear Schroedinger equation

2ik ∂zA+
(
∂2xA+ ∂2yA

)
+ 2k2

δn(I, t)

n0
A = 0 (2)

where k = k0n0, k0 the vacuum wave-vector.
For a photorefractive crystal of tetragonal structure such as SBN, the electro-optic effect is linear and

δn = −1

2
n30r33ESC . (3)

where r is the crystal electro-optics tensor, and r33 is the only relevant component because of the direction of the
applied field.
The space charge field is time-dependent, [1], and described by

∂ESC

∂t
=
Eext

td
− ESC

td

(
1 +

I

Ib

)
(4)

where Eext = V/Lx, V applied voltage, and Lx distance between the 2 electrodes, Ib is the background intensity and
td is the characteristic dielectric time constant, depending on the material recombination rate, the impurity densities,
and the background intensity.
Neglecting for simplicity time nonlocality (i.e. ∂t(1 + I/Ib) ≃ 0), the equation has the solution

ESC(I, t) =
Eext

1 + I
Ib

[
1− e

−
(
1+ I

Ib

)
t/td

]
=

Eext

1 + I
Ib

[
1− e−t/τs

]
(5)
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nonlocal non-centrosymmetricnon-centrosymmetric centrosymmetrica) b) c)

Supplementary Figure 1. Nonlinear propagation of 2 box with wy = w2 simulated with different types of nonlinearity.
a) Saturable Kerr nonlinearity describing non-centrosymmetric photorefractive crystals. b) Saturable Kerr nonlinearity in
centrosymmetric photorefractive crystals. c) Saturable nonlocal nonlinearity obtained in presence of higher-order effects.
Expressions for the nonlinearity refer to the nonlinear term in Eq.8.

where τs = td/(1 + I/Ib) is the saturation time.
Thus, we get the saturable Kerr nonlinear equation:

2ik
∂A

∂z
+

(
∂2xA+ ∂2yA

)
+ 2k2

δn0
n0

f(t)(
1 + I

Ib

)A = 0. (6)

with δn0 = −n30r33V/(2Lx) and response function f(t) = (1− e−t/τs).

Supplementary Note 3. Generality of the observed 2D dam break flow

We observed the 2D breaking dynamics of a box-shaped wave and the generation of a gaseous phase of solitons.
Numerical simulations confirm the observations. Results refer to a saturable nonlinearity in the presence of noise.
In order to support the generality of our results and confirm that the phenomenology also occurs for other kinds of
nonlinearity, we investigate through numeric simulations. The results, reported in Supplementary Fig.1, confirm a
breaking picture characterized by colliding DSWs along orthogonal directions even for a different nonlinearity. The
investigated cases are the centrosymmetric photorefractive crystals, Ref.[2], whose electro-optic response is quadratic,
and a saturable nonlocal nonlinearity studied in Ref.[3].

Supplementary Note 4. Mapping between time evolution and space propagation

To model the experimental measurements, we introduce a dimensionless version of the equation that includes the
time dependence in the propagation variable. By defining

ψ =
E

E0
, ζ =

2z

ε(t)zD
, ξ =

2x

w0
, η =

2y

w0
; (7)
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a)

b)

Supplementary Figure 2. Space propagation and time evolution of the optical field. a) Simulation of space propagation at
a fixed time. b) Simulation of time evolution at the final propagation distance z = zfin = 5mm.

where w0 is an arbitrary length related to the beam width, and zD = πn0w
2
0/λ is the diffraction length of a Gaussian

beam of width w0. We obtain the equation

iε(t)
∂ψ

∂ζ
+
ε2(t)

2

[
∂2ψ

∂ξ2
+
∂2ψ

∂η2

]
+

1

1 + εK |ψ|2ψ = 0. (8)

The time dependence is now encoded in the propagation variable ζ through the parameter ε(t)

ε(t) =
w0

zD

√
n0

δn0f(t)
. (9)

Thus, the box evolves in time and propagates in z simultaneously and the field variation can be written as

∂ψ

∂ζ
=
∂z

∂ζ

∂ψ

∂z
+
∂t

∂ζ

∂ψ

∂t
. (10)

However, in the experiment, we observe the output facet of the crystal, corresponding to the fixed value of z = zfin,
and the variation of the field ψ in the propagation variable ζ, eq.(10) reduces to a time variation.
The simulations have been realized as z-propagation at a fixed time, considering ε(t) a constant. The two methods
give comparable results, illustrated by the example in Fig.2. Note that the differences between space propagation and
time evolution are due to the initial condition. Indeed, in the time evolution, at t = 0 and z = zfin we observe the
linear propagation of the box, while in the z-propagation, at z = 0 the box is unevolved. Diffraction affecting the
linear propagation, most evident for the short side, causes the small differences between the two cases. However, the
steady states, reached after the breaking, are comparable.

Supplementary Note 5. Soliton existence curve

The nonlinear evolution of the box-shaped optical field results in the generation of an ensemble of 2D solitary waves.
The proof of the solitonic nature of the observed localized modes can be found in the soliton existence curve which
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Supplementary Figure 3. Soliton existence curve. Relation between the FWHM of the solitons and their peak intensity.
Orange dots are simulated data, blue dots are experimental data, and the black line is the curve obtained by numerical analysis.

relates the soliton width to its peak intensity. Defining the mode width as the full-width half maximum (FWHM) of
the intensity distribution around each peak, we measure the FWHM of the generated 2D solitons in experiments and
simulations, obtaining the existence curve reported in Fig.3.
We compare the data with the existence curve obtained by numerical integration of the model equation. The model
equation is not integrable, but, solitonic solutions can be numerically found by assuming radial symmetry[4]. The
resulting curve provides the relation between the dimensionless width of the solitonic solutions and the normalized
intensity of the peak. The dimensionless width is related to the measured FWHM by a scaling parameter. Supple-
mentary Fig.3 reports the result of the analysis. The error on the experimental points takes into account the (x, y)
asymmetry of the data due to the crystal anisotropy. We note that 2D solitons in both experiments and simulations
are well described by the expected curve.
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