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Single-photon emission from a two-level system offers promising perspectives for the
development of quantum technologies, where multiphotons are generally regarded as
accidental, undesired and should be suppressed. In quantum mechanics, however, mul-
tiphoton emission can turn out to be even more fundamental and interesting than the
single-photon emission, since in a coherently driven system, the multiphoton suppres-
sion arises from quantum interferences between virtual multiphoton fluctuations and
the mean field in a Poisson superposition of all number states. Here, we demonstrate
how one can control the multiphoton dynamics of a two-level system by disrupting
these quantum interferences through a precise and independent homodyne control of
the mean field. We show that, counterintuitively, quantum fluctuations always play a
major qualitative role, even and in fact especially, when their quantitative contribution
is vanishing as compared to that of the mean field. Our findings provide new insights
into the paradoxical character of quantum mechanics and open pathways for mean-field
engineering as a tool for precision multiphoton control.

Resonance fluorescence—the coherent excitation of a
two-level system (TLS) by a laser—has been a hallmark
of the quantum theory of light-matter interaction since
its early days [1]. This process has been extensively stud-
ied across various platforms, including atoms [2], super-
conducting qubits [3], molecules [4], ions [5], chiral artifi-
cial atoms [6] and solid-state quantum dots [7], etc. The
rich physics of resonance fluorescence has been investi-
gated through a prolific literature over decades, ranging
from multiphoton scattering [8] to fluorescence from a
squeezed vacuum [9, 10], passing by interferences between
past and future quantum states [11] as well as quantum
dynamical [12, 13] and nonlocal [14] aspects. Among
these phenomena, the generation of single photons has
received significant attention as a promising resource for
quantum technologies.

In quantum mechanics, any observed outcome arises
from the probability distribution over all possible states.
Single-photon emission of a TLS under weak coherent
driving can be thus described by a quantum superpo-
sition of all photon number states, where multiphotons
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remain virtual. By “virtual” we mean that their proba-
bility amplitudes play a role but cancel out in the mea-
surement. Recently, the multiphoton aspect has been
revisited for its spectacular manifestations of counterin-
tuitive features of quantum physics. Prominently, Mas-
ters et al. have shown how a single TLS can simultane-
ously emit two photons despite having only one transi-
tion available to do so [15]. Liu et al. have subsequently
demonstrated entanglement of the emitted light and pro-
pelled its technological prospects [12]. Manipulation of
single or multiple photons has been achieved with more
complex systems such as a TLS coupled to a cavity [16–
21], which relies on internal interference in the system but
limits the tunability, and an ensemble of atoms mediat-
ing interference [22, 23], by taking advantage of many-
body enhancement. However, the multiphoton dynamics
of the simplest system in quantum optics remains largely
unexplored, leaving gaps in the understanding of the un-
derlying physics.

In this work, we investigate the fundamental quantum
interference of multiphoton fluctuations with a classical
mean field in the resonance fluorescence of a TLS under
weak driving. We observe that antibunching in all multi-
photon correlations (experimentally up to three-photon)
turns into superbunching of all orders when the system
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FIG. 1. (a) For incoherent driving Pσ, a TLS σ allows only one excitation at a time, leading to single-photon emission
characterized by an extended Hanbury Brown-Twiss setup. TT, time-tagging unit. (b) Under coherent driving Ωσ, however,
the single-photon emission arises from interferences between the coherent mean field ⟨σ⟩ and the quantum fluctuations ς. The
probability amplitudes of multiphotons are canceled out by the destructive interferences with the mean field. (c) Disrupting
the interferences by adding an external coherent field F⟨σ⟩eiπ can bring the multiphotons to light or suppress a given n-

photon emission in an otherwise almost coherent field. (d) Glauber’s g(n) correlators provide suitable observables for the
characterization of quantum light. In the Heitler regime, they all diverge at F = 1 when the external field cancels ⟨σ⟩—in which

case multiphoton emission to all orders is observed from the TLS, beside its emission ⟨s†s⟩ approaching 0. At F = n, each g(n)

is individually suppressed. (e) Experimental realization of the scheme by combining cross-polarized resonance fluorescence of
a single quantum dot and a homodyne setup. An external coherent field—the local oscillator—is controlled in polarization,
phase ϕ and intensity ∝ F2. The homodyned signal is fed to a detection system, which allows us to study correlations with
stabilized phase control. Pol, polarizer; BS, beam splitter; PBS, polarizing beam splitter; λ/2, half-waveplate; λ/4, quarter-
waveplate; OA, optical attenuator; SNSPD, superconducting nanowire single-photon detector.

is reduced to its quantum fluctuations. This result
is achieved by disrupting the interferences with a full
and independent control of the mean field. A precise
admixture of the classical and quantum fields realizes
individual suppression of photon numbers, revealing how
the multiphoton coincidences behave independently from
each other. This tunability opens up new possibilities
for harnessing multiphoton physics.

The TLS, with its operator σ ≡ |g⟩⟨e|, is the most
fundamental quantum emitter. Its only transition from
the excited |e⟩ to the ground |g⟩ state can be saturated,
resulting in a stream of antibunched photons. While this
paradigmatic description for single-photon emission from

a TLS is accurate in cases such as with incoherent ex-
citation (Fig. 1(a)), under coherent driving, an entirely
different scenario arises (Fig. 1(b)). The coherent driving
of an oscillator leads to a coherent response, even when
this oscillator is quantum [24], and small nonlinearities
can be dealt with perturbatively in the form of fluctua-
tions. The fluctuations are obtained by subtracting the
mean field ⟨σ⟩ of the system from the TLS operator σ:

ς ≡ σ − ⟨σ⟩ , (1)

where ς is the quantum fluctuation operator. When
the driving Ωσ is weak compared to the radiative decay
rate γσ of the emitter, the ratio between the intensity
of the mean field |⟨σ⟩|2 and the intensity of the fluctua-
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tions ⟨ς†ς⟩ can be made arbitrarily large:

⟨ς†ς⟩ ≪ |⟨σ⟩|2 . (2)

In this so-called Heitler regime [1], i.e., when Ω ≪ 1,
where Ω ≡ Ωσ/γσ, the total intensity ⟨σ†σ⟩ = |⟨σ⟩|2 +
⟨ς†ς⟩ is composed of [25]

|⟨σ⟩|2 =

(
2Ω

1 + 8Ω2

)2

and ⟨ς†ς⟩ = 8Ω2|⟨σ⟩|2 . (3)

In a classical setting, when fluctuations are significantly
smaller than the mean field, they are regarded as negli-
gible or treated as perturbative corrections. In a fully
quantum description, this perturbative picture breaks
down regardless of the quantitative imbalance, and what
occurs is a much more dramatic excitation of the quan-
tum field into a superposition of all its possible multi-
photon states. This outcome is surprising as one might
expect that in this weak driving regime, multiphotons
would play no role whatsoever. As far as single-photon
emission is concerned, interferences of the quantum fluc-
tuations with the classical mean field result in the finally
observed emission of single photons, out of a dormant
quantum field simmering with multiphotons. These mul-
tiphotons can be revealed by disrupting their interfer-
ences. Experimentally, this can be achieved by control-
ling the mean field—a coherent component—through the
so-called homodyne technique [26]. It consists in admix-
ing a local oscillator (LO) with the signal to precisely
adjust the coherent fraction. This technique proved ex-
tremely effective to observe small quantum effects ob-
scured by a strong classical field [27–29]. Here, one can
seize control of the coherent field to unknit the single-
photon emission into multiphotons (Fig. 1(c)). The ex-
ternal LO field is represented as a coherent state∣∣F⟨σ⟩eiϕ

〉
, (4)

whose amplitude we write as a factor F of ⟨σ⟩. The
relative phase ϕ = π is set to be opposite to the phase
of the mean field. As a result, the intensity of the total
signal s ≡ σ +F⟨σ⟩eiπ which is, in general,

⟨s†s⟩ = (F − 1)2|⟨σ⟩|2 + ⟨ς†ς⟩ , (5)

reduces to the quantum fluctuations ⟨ς†ς⟩ when F = 1.
Next, we show how the small fluctuations govern the

multiphoton physics of the system. The best way to char-
acterize quantum light is through the standard observ-
ables in quantum optics: Glauber’s nth-order correlation
functions g(n)(τ1, . . . , τn−1). They quantify the density
of n-photon detections separated by times τi. The joint
detection of n photons, i.e., with τi = 0 for all i, measures
by how much a coincidence is magnified (or suppressed
if < 1) as compared to an uncorrelated signal of same
intensity. For the problem at hand of unleashing multi-
photon emission from a TLS by admixing an external LO
field, the n-photon coincidences can be obtained exactly

for any driving (Methods). In the Heitler limit of Ω → 0,
they read

g(n)(0) =
F2(n−1)(F − n)2

(F − 1)2n
. (6)

From the denominator, one can see that these multipho-
ton observables, shown in Fig. 1(d), diverge for all n
whenF = 1. They are superbunched for all photon num-
bers according to Eq. (6). This so-called unconventional
bunching [30] occurs when the mean field ⟨σ⟩ is canceled
completely from the signal, leaving only the quantum
fluctuations ς. It is remarkable that subtracting the mean
field from a TLS leads to strong multiphoton emission to
all orders.
Now turning to the numerator of Eq. (6), one can

see that the multiphoton correlations have two zeros:
the first one for all n at F = 0, i.e., without an ex-
ternal field. This case is the standard resonance flu-
orescence, which exhibits both the conventional anti-
bunching [30]—single-photon emission—and sub-natural
linewidth [31, 32], though these two properties cannot be
observed simultaneously [33–36].
More striking features occur with the second zero in

Eq. (6) which is n-dependent with g(n)(0) → 0 at F = n.
Although F is a continuous variable, as befits a classical
field, it triggers a strong response of the system when tak-
ing integer values, which is a manifestation of the inter-
play between interfering continuous and quantized fields.
Unlike the previous case with F = 0, these multiphoton
resonances are not degenerate. One can suppress any
given photon number individually without strongly af-
fecting the other correlators, realizing the unconventional
antibunching [30]. In particular, one can suppress two-
photon emission only, i.e., g(2)(0) → 0 at F = 2. In this
case, due to the proximity to the divergence at F = 1,
all the other photon-number coincidences remain much
larger than would be expected on accounts of random
events alone, with g(n)(0) ≫ 1 for n ≥ 3. In other words,
the suppression of two-photon coincidences does not pre-
clude increased coincidences of higher numbers of pho-
tons such that

g(2)(0) ≪ g(3)(0) . (7)

At F = 3, one can realize a suppression of the three-
photon coincidences without strong suppression of the
two-photon ones, g(3)(0) → 0 while g(2)(0) ⪅ 1 and re-
verse the trend of Eq. (7), i.e., qualitatively

g(2)(0) ≫ g(3)(0) . (8)

In our experiment, the TLS is realized with a sin-
gle InGaAs quantum dot under weak driving (Meth-
ods). Our setup with multiphoton coincidence counting
units to characterize the homodyned signal is sketched in
Fig. 1(e). In Fig. 2, we study the intensity and multipho-
ton coincidences as the mean field is manipulated. Ex-
perimentally, the measured intensity Is of the admixture
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FIG. 2. Experimental results (symbols) and theoreti-
cal predictions (solid lines) for intensity (black), along

with g(2)(0) (blue) and g(3)(0) (red) of the homodyned sig-
nal, as functions of the LO field amplitude F under a driv-
ing Ω ≈ 0.15. At F = 0, without admixing with an external
field, multiphoton events remain virtual due to destructive
interferences of their probability amplitudes, resulting in the
emission of single photons. At F = 1, the external field can-
cels the mean field of the system and thus lays bare its quan-
tum fluctuations. The multiphoton nature of the fluctuations
is revealed in strong g(2)(0) and g(3)(0) superbunching despite
a drop of the intensity by about an order of magnitude. For a
sizable coherent field, one can suppress n-photon emission in-
dependently. The cases n = 2 and n = 3 are shown and mag-
nified in the inset, confirming the transition from two-photon
suppression to three-photon suppression. The two undeter-
mined cases with g(3)(0) = 0, arising from zero coincidence
events throughout the entire integration time, are shown on
the horizontal axis.

is proportional to the theoretical quantity ⟨s†s⟩, scaled
by overall experimental efficiency, emitter decay rate and
other relevant factors. The intensity as a function of the
external field F (black symbols) allows us to access the
intensity of the coherent field, I⟨σ⟩ ∝ |⟨σ⟩|2, and that of

the quantum field, Iς ∝ ⟨ς†ς⟩, as well as to extract the
applied driving strength experienced by the system. We
obtain I⟨σ⟩ ≈ 252.2 cts/ms and Iς ≈ 47.5 cts/ms at the
driving Ω ≈ 0.15 (Supplementary Information). For the
given driving, the contribution of the coherent mean field
to the total emission is about 84%, satisfying Eq. (2).
As F increases from 0 to 1, the intensity of the admix-
ture decreases by roughly an order of magnitude as the
coherent emission is gradually removed. When only the
fluctuations remain in the signal, multiphotons emerge
with strong bunching correlations. Theoretically, we ob-
serve g(n+1)(0) ≫ g(n)(0) ≫ 1 for all n ≥ 2, and exper-
imentally, we confirm g(3)(0) ≫ g(2)(0) ≫ 1 at F = 1
in Fig. 2. While this quantum effect becomes more pro-
nounced as the driving decreases, in the laboratory, the
Heitler limit is an asymptotic ideal which must be com-
pounded with experimental limitations such as efficiency
and stability. For finite driving, we observe that the cor-
relations retain the same structure but become smoother,
decrease in contrast, and shift in position.

The non-degenerate multiphoton antibunching reso-

nances are observed with up to three photons in the inset
of Fig. 2. These resonances at the finite driving are not as
prominent as in the mathematical limit. However, all the
qualitative relationships of Eqs. (7) and (8) are satisfied
and in good agreement with the theoretical prediction
for this driving. We observe two-photon antibunching
and three-photon bunching at F = 3.38. Namely,
with g(2)(0) = 0.957 ± 0.004 and g(3)(0) = 1.28 ± 0.10,
we indeed have g(2)(0) < 1 < g(3)(0). At F = 4.17, we
confirm the opposite stronger three-photon suppression
with g(2)(0) = 0.951 ± 0.004 and g(3)(0) = 0.79 ± 0.09.
Consequently, we have demonstrated that multiphoton
coincidences can be enhanced or suppressed, together
or independently, depending on how the mean field ties
them together.

To discuss the multiphoton physics underlying these
counterintuitive quantum phenomena in more detail,
we examine four distinct regimes with a theoretical
overview (Fig. 3(a)) across continuous variations of F

in the Heitler limit. Experimental results of g(3)(τ1, τ2),
where τ1 and τ2 are the time differences of events de-
tected by the second and third detectors relative to the
first, are shown in Fig. 3(b)-(e) under a finite driving Ω ≈
0.15, along with g(2)(τ) and radially integrated g(3)(τ∗),
where τ∗ represents the effective time delay for three-
photon events as |τ∗| =

√
τ21 + τ22 (Methods).

Our observations are unequivocal: The leftmost col-
umn describes the usual Heitler regime of resonance fluo-
rescence. At F = 0, while the emission is predominantly
coherent, it is antibunched in all multiphoton correla-
tors. The antibunching in the second-order, g(2)(0) =
0.006 ± 0.001, is also seen in g(3)(τ1, τ2) of Fig. 3(b) as
three lines with vanishing coincidences across the whole
landscape, when two of the three detectors are triggered
at the same time, i.e., τ1 = 0, τ2 = 0 or τ1 = τ2. At their
intersection, τ1 = τ2 = 0, no photon triplet within 1.2 ns
time delay (corresponding to the center plateau of the
integrated g(3)(τ∗)) was observed over the entire integra-
tion time (> 19 hours). For an uncorrelated signal of
the same intensity, approximately 12 three-photon coin-
cidence events would be expected from the averaged un-
correlated three-photon events Ḡ(3)(∞) = 2.02 for 200 ps
binning.

The second column, Fig. 3(c), describes the case
at F ≈ 1, showcasing our homodyne technique that
gives us access to the naked quantum fluctuations ς.
How the quantum signal looks like in g(3)(τ1, τ2) land-
scape is striking: the considerable drop in classical
emission but the persistence of simultaneous two- and
three-photon emission produces bunched diagonals that
stand on the vacuum. Although the three-photon coin-
cidence g(3)(0, 0), as a third-order process, is measured
from a much more scarce signal than g(2)(0), its much
stronger deviation from the classical case makes its fea-
tures more discernible. We obtain g(2)(0) = 12.7 ± 0.6
and g(3)(0) = 78 ± 57, confirming the multiphoton na-
ture of the fluctuations. Our findings can be seen di-
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FIG. 3. (a) Calculated multiphoton observables in the Heitler limit Ω → 0. (b–e) For Ω ≈ 0.15 normalized third-order

coincidences g(3)(τ1, τ2) with time delays τ1 and τ2 (second row) and their integrated results g(3)(τ∗) with second-order corre-

lation g(2)(τ) (third row) for four configurations of interest. (b) With no external field, F = 0, all multiphoton probabilities

are suppressed, producing single-photon emission. In g(3)(τ1, τ2), this is visible as three depleted lines (g(2)(0) ≪ 1) and a

wide dip at their intersection (g(3)(0, 0) ≪ 1) in an otherwise uncorrelated background, satisfying g(3)(0) ≪ g(2)(0) ≪ 1. (c)
Canceling the mean field, with F = 1, we observe strong multiphoton bunching from the quantum fluctuations, visible as
three lines of the signal standing on the vacuum. This realizes g(3)(0) ≫ g(2)(0) ≫ 1. (d) Changing the sign of the mean field

realizes the counterintuitive relation g(2)(0) < 1 < g(3)(0). Two-photon emission is suppressed, but not higher-order emissions,
thus disqualifying this regime as a single-photon source. (e) Individual suppression of the three-photon component. Further

increasing the mean field realizes the next case where g(3)(0) < 1 while g(2)(0) ⪅ 1.

rectly from the photon number probability distribution,
which can be extracted from the Glauber correlators [37].
The probability of n-photon coincidences p(n) of the ho-
modyned signal is given by the Poissonian distribution
of the external LO modulated by the quantum fluctu-
ations (Methods). At F = 1, the TLS could be seen
as a single-photon filter of the external LO, suppressing
the single-photon emission in the admixture, while the
probability of two-photon coincidences p(2) is identical
to that of the LO as discussed earlier [20, 22, 38]. How-
ever, this filter picture does not hold for higher photon
numbers. Instead, the weak signal displays (n−1)2 times
more n-photon coincidences than the external field does.
This shows that, from three photons upward, a coher-
ent state can extract more multiphoton events from the
quantum fluctuations than it has itself. Thus, there ex-
ists a multiphoton amplification for n ≥ 3. Importantly,
the one-photon probability still remains dominant among
all n-photon probabilities even at its strongest suppres-
sion at F = 1 [39].

The third and fourth columns, where the mean field
is again sizable, compellingly show the qualitative (but
not yet quantitative) relationships (7) and (8), which
complete the versatility of the interplay between the
mean field and the fluctuations. Bunching and anti-
bunching of photon triplets are directly visible at the
center of the three-photon landscapes g(3)(τ1, τ2) in
Fig. 3(d) and (e), respectively. By introducing more
external field as the LO amplitude F increases from 2.94
to 4.17, the antibunching resonance g(n)(0) < 1 shifts
from n = 2 to n = 3 as shown by the transition of g(3)(0)
from 1.17 ± 0.07 to 0.79 ± 0.09 while g(2)(0) remains
below 1. In Fig. 3(d), one can see this independent
behavior of the multiphoton observables that suppresses
two-photon events, while three-photon ones become
more likely than an uncorrelated signal with same
intensity. With further increase of the external field,
three-photon events are the most strongly suppressed
among all n. This is counterintuitive, since one would
expect the impact of the fluctuations to become negligi-
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FIG. 4. Power-dependent correlations of g(2)(0) (left) and

g(3)(0) (right) with decreasing driving of (a) Ω ≈ 0.40,
(b) Ω ≈ 0.28 and (c) Ω ≈ 0.15. The multiphoton correlations
of the fluctuations at F ≈ 1 increases as driving decreases,
i.e., as the system approaches the Heitler limit, also with reso-
nances converging to each other and towards F = 1. Theoret-
ical and experimental results are given as solid lines and sym-
bols, respectively, dashed guidelines represent the strongest
bunching resonances. All the data presented in the main text
is for the lowest driving (c) where the correlations exhibit the
strongest variation. As a result of setup instability over the
long acquisition time required due to the weak signal, devi-
ations from the theory are also the largest for this driving
strength. The undetermined cases with g(3)(0) = 0, arising
from zero coincidence events throughout the entire integra-
tion time, are shown on the horizontal axis.

ble due to a strong external field at F ≫ 1. However,
instead of smothering the quantum attributes by making
the fluctuations even more negligible, the classical field
singles out strong g(n)(0) ≪ 1 for high-order n ≥ 2
quantum resonances, with no theoretical upper limit
neither on n nor on the total field intensity. In this
regime, a strong destructive quantum interferences
occurs selectively for a specific photon number that is
determined by the amplitude of the external field.

In Fig. 4, we provide evidence for such non-
classical observations being enhanced in the deeper
Heitler regime. The correlations at three driving
strengths (Ω ≈ 0.40, 0.28 and 0.15) show that the
multiphoton effects are indeed magnified as the system
approaches the lower driving case, even though the
intensity contribution of the quantum fluctuations
decreases (⟨ς†ς⟩/⟨σ†σ⟩ of 56%, 38% and 16%, Sup-
plementary Information). Furthermore, the two- and
three-photon resonances converge toward the common
theoretical value F = 1. The largest deviation be-
tween the measured values and the theoretical model
is found with the smallest driving, which we primarily

attribute to the limited setup stability during the
long integration time of 277 hours for Ω ≈ 0.15. The
larger signal allows us to conduct the measurements
over smaller periods of time (25.2 hours for Ω ≈ 0.28
and 4.5 hours for Ω ≈ 0.40), thereby mitigating this
limitation. Consequently, there is a closer agreement
with the theoretical model at higher powers, where
quantum effects are, however, attenuated. One could,
with brighter emitters as well as more efficient and stable
setups, optimize the features we have reported by fur-
ther reducing Ω, i.e., accessing deeper the Heitler regime.

In conclusion, we have experimentally demonstrated
the external control of the quantum emission from a TLS
under weak coherent driving. This control unveils the
intrinsic multiphoton nature of the paradigmatic, funda-
mental, and simplest quantum optical emitter, produc-
ing both antibunching and bunching across all orders as
well as their independent suppression. The multipho-
ton physics of the system is governed by quantum in-
terferences of multiphoton fluctuations with a coherent
mean field, which we manipulate independently. These
quantum effects become increasingly pronounced as the
system approaches the deeper Heitler regime. This mul-
tiphoton aspect similarly applies to quantum emitters in
cavities, coupled TLSs and strongly-correlated phases in
condensed matter systems. Our results open the door
to further exploit such effects as a resource, for exam-
ple, feeding a deterministic photon sorting system [40]
for photonic phase-transistors that take advantage of
the multiphoton amplification that we have identified
for n ≥ 3, or through the realization of a simultaneous
sub-natural linewidth single-photon source [33]. Build-
ing on our demonstration, we anticipate that mean-field
control will serve as an universal key for unlocking mul-
tiphoton emission in coherently driven quantum systems
and for enabling the generation of non-classical light be-
yond single photons.

METHODS

Theoretical model for multiphoton observables.
A TLS under coherent driving at resonance is modeled by
the Hamiltonian, H = Ωσ(σ

† + σ). Solving the master
equation, ∂tρ = i[ρ,H] + (γσ/2)Lσρ, in the Lindblad
form, where the superoperator Lσρ = 2σρσ† − σ†σρ −
ρσ†σ, yields the following solution for the steady state

ρ =

(
1− ⟨nσ⟩ ⟨σ⟩∗

⟨σ⟩ ⟨nσ⟩

)
, (9)

where

⟨nσ⟩ =
4Ω2

σ

γ2
σ + 8Ω2

σ

and ⟨σ⟩ = 2iΩσγσ
γ2
σ + 8Ω2

σ

(10)

are the population and the mean field of the system,
respectively. The correlation functions of the homo-
dyned signal can be derived by substituting σ with s =
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σ +F⟨σ⟩eiϕ [41]:

G(n)(0) = ⟨s†nsn⟩ =
(
F2|⟨σ⟩|2

)n
(Fγσ)

−2×
[(n2 +F2)γ2

σ + 8n2Ω2
σ + 2nFγ2

σ cos(ϕ)] , (11)

from which the Glauber’s correlation functions read

g(n)(0) =
⟨s†nsn⟩
⟨s†s⟩n

=

(Fγσ)
2(n−1)[(n2 +F2)γ2

σ + 8n2Ω2
σ + 2nFγ2

σ cos(ϕ)]

[F2γ2
σ + 2Fγ2

σ cos(ϕ) + (γ2
σ + 8Ω2

σ)]
n

.

(12)

This result simplifies to Eq. (6) for vanishing driv-
ing (Ωσ/γσ → 0) and out-of-phase (ϕ = π) condition.

The photon number probability distribution p(n) of
the signal, representing the diagonal elements of the ef-
fective quantum state, accounts for the correlations of the
admixture and can be reconstructed from the Glauber’s
correlators as [37]

p(n) =

∞∑
k=0

(−1)k

k!

G(n+k)(0)

n!
. (13)

Substituting G(n(0) in this formula by Eq. (11), the ana-
lytical solution of the photon number distribution can be
obtained regardless of the driving strength. However, for
simplicity, we consider the limiting case of weak driving:

p(n) = pcoh(n)MF(n) , (14)

where pcoh(n) =
〈
n
∣∣F⟨σ⟩eiϕ

〉
is the Poisson distribution

of the external coherent state as shown in Eq. (4). MF(n)
is a multiphoton quantum correction that modulates this
coherent state:

MF(n) ≡(
1− n

F

)2

−
(
1 + 2n− 2F − 2n2

F2

)
(2Ω)

2
+ o(Ω4) .

(15)

This description of the quantum interference predisposes
one to see the TLS as a photon-number-sensitive filter,
but as discussed in the text, this is in fact more like a
multiphoton amplifier (from three-photon upward) since
more multiphotons can be emitted than are available
anywhere in the system [39].

Quantum dot as a TLS. The experiments are
performed with a single self-assembled quantum dot,
where a neutral exciton exhibits a fine-structure split-
ting of 790MHz. One dipole of the neutral exciton
transitions, with an emission wavelength of 910 nm and
a radiative lifetime of 216 ps, is driven by a continuous-
wave laser. The narrow laser’s linewidth (<10 kHz)
allows for resonant driving of the single dipole in our
quantum dot, thereby realizing a TLS. The sample is

cooled down to 4.2K in a helium dip stick. A Schottky
diode structure embedding the studied quantum dot
allows us to stabilize the electronic environment and to
fine-tune the emission wavelength of the system via the
quantum-confined Stark effect [42]. Below the quantum
dot layer, a distributed Bragg reflector enhances the col-
lection of resonance fluorescence from the system. The
reflection of the excitation laser is effectively suppressed
by cross-polarized excitation and detection [43].

Homodyne mean-field engineering. As shown
in Fig. 1(e), our homodyne interferometer is constructed
similarly to Ref. [28], however, instead of using the
reflection of the excitation as a LO input, we pick off
the excitation beam before interaction with the sample.
This ensures that the LO remains a coherent state, free
from any emission by the system. The polarization of
the LO is carefully controlled by a set of motorized half-
and quarter-waveplates to align with the polarization
of the collected system emission. We control the inten-
sity of the LO, which is proportional to F2, using a
fiber-based optical attenuator. The phase difference ϕ
between the emission and the LO is either scanned or
stabilized upon measurement requirements, by adjusting
the propagation path length of the LO with a linear
translation stage. The stabilization during correlation
measurements is managed by a software PID control.
In each control cycle (10ms), interference visibility is
calculated from the detected counts of all channels, and
the stage position is adjusted to maintain a given target
visibility. For passive stabilization, we place our setup in
a home-made stabilization box whose interior is covered
with acoustic absorption foam to reduce the impact
of environmental vibrations. By interfering the LO
and the system emission in a polarization-maintaining
fiber-based beam splitter, we minimize possible degra-
dation of signal such as polarization rotation and mode
mismatch caused from environmental fluctuations, e.g.
temperature drift and mechanical vibrations.

Three-photon correlation. To examine the
second- and third-order correlations, one output of
the homodyne beam splitter in Fig. 1(e), where the
signal of interest is desired, is split by two cascaded
50:50 fiber-based beam splitters and collected by three
superconducting nanowire single-photon detectors,
implementing an extended Hanbury Brown-Twiss setup.
Time-tags of detection events are recorded by a mul-
tichannel time-tagger with an overall timing jitter of
approximately 20 ps. This configuration allows for the
measurement of the unnormalized three-photon correla-
tion G(3)(τ1, τ2) through a two-dimensional histogram.
Such time-correlated multiphoton measurements are
technically challenging, since we operate with a single
TLS, which we furthermore push in a regime of vanishing
classical emission. A large bin size in these correlation
measurements can mitigate limited signal counts, but it
also reduces the timing resolution. As a result, features
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like bunching or antibunching become less noticeable,
similarly to the effects of detector timing jitter [44]. A
bin size of 500 ps is chosen for the g(3)(τ1, τ2) results
presented in Fig. 2, achieving visible features with
a reasonable signal-to-noise ratio. We maximize the
visibility of the signal and further reduce the bin size by
performing a radial integration along the antidiagonal
line (τ1 = −τ2) in G(3)(τ1, τ2) and obtain g(3)(τ∗) by
normalizing the integrated G(3)(τ∗) with the averaged
uncorrelated events (Supplementary Information). As
a result, the final values are extracted with a bin size
of 200 ps for g(3)(τ∗).

ACKNOWLEDGEMENTS

We gratefully acknowledge financial support from the
German Federal Ministry of Education and Research
via the funding program Photonics Research Germany
(Contract No. 13N14846) and the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)
via projects MU 4215/4-1 (CNLG), INST 95/1220-1
(MQCL) and INST 95/1654-1 (PQET), Germany’s
Excellence Strategy (MCQST, EXC-2111, 390814868),
the Bavarian State Ministry of Science and Arts via
the project EQAP. C.A.-S. acknowledges the support
from the Comunidad de Madrid fund “Atracción de
Talento, Mod. 1”, Ref. 2020-T1/IND-19785, the
projects from the Ministerio de Ciencia e Innovación
PID2023-148061NB-I00 and PCI2024-153425, the
project ULTRABRIGHT from the Fundación Ram
ón Areces, the Grant “Leonardo for researchers in

Physics 2023” from Fundación BBVA, and the Span-
ish State through the Recovery, Transformation, and
Resilience Plan (MAD2D-CM-UAM7), and the Euro-
pean Union through the Next Generation EU funds.
F.P.L. acknowledges support from HORIZON EIC-
2022PATHFINDERCHALLENGES-01 HEISINGBERG
Project 101114978. E.d.V. acknowledges support from
the CAM Pricit Plan (Ayudas de Excelencia del Profeso-
rado Universitario), the Technical University of Munich –
Institute for Advanced Study (Hans Fischer Fellowship)
and the Spanish Ministry of Science, Innovation and
Universities through the “Maria de Maetzu” Programme
for Units of Excellence in R&D (CEX2023-001316-M),
the MCIN/AEI/10.13039/501100011033, FEDER UE,
projects No. PID2020-113415RB-C22 (2DEnLight) and
No. PID2023-150420NB-C31 (Q), and from the Proyecto
Sinérgico CAM 2020 Y2020/TCS-6545 (NanoQuCo-
CM). S.K.K. and C.A.-S. thank D. Marni-Sobrino for his
collaboration in the phase stabilization implementation.

AUTHOR CONTRIBUTIONS

E.Z.C., F.P.L. and E.d.V. developed the theoretical
framework. S.K.K. and L.H. executed the experiments
with contributions from K.B., F.S. and C.C., under
supervision of K.M. and J.J.F. C.A.-S. implemented
the phase control and stabilization technique. S.K.K.,
E.Z.C. and L.H. were responsible for data analysis.
H.R. prepared the sample under study. E.d.V. and
K.M. organized the research. The manuscript was writ-
ten by S.K.K. and F.P.L. with input from all the authors.

[1] Heitler, W. The Quantum Theory of Radiation (Oxford
University Press, Oxford, 1954), 3 edn.

[2] Jessen, P. S. et al. Observation of quantized motion of
Rb atoms in an optical field. Phys. Rev. Lett. 69, 49–
52 (1992). URL https://link.aps.org/doi/10.1103/

PhysRevLett.69.49.
[3] Astafiev, O. et al. Resonance fluorescence of a single arti-

ficial atom. Science 327, 840–843 (2010). URL https://

www.science.org/doi/abs/10.1126/science.1181918.
https://www.science.org/doi/pdf/10.1126/science.1181918.

[4] Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. &
Sandoghdar, V. Efficient coupling of photons to a sin-
gle molecule and the observation of its resonance fluo-
rescence. Nature Phys. 4, 60–66 (2008). URL https:

//doi.org/10.1038/nphys812.
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M. Entanglement in resonance fluorescence. npj Nanopho-
ton. 1, 3 (2024). URL https://doi.org/10.1038/

s44310-023-00001-6.
[15] Masters, L. et al. On the simultaneous scattering of

two photons by a single two-level atom. Nature Photon.
17, 972–976 (2023). URL https://doi.org/10.1038/

s41566-023-01260-7.
[16] Faraon, A. et al. Coherent generation of non-classical

light on a chip via photon-induced tunnelling and block-
ade. Nature Phys. 4, 859–863 (2008). URL https:

//doi.org/10.1038/nphys1078.
[17] Flayac, H. & Savona, V. Unconventional photon block-

ade. Phys. Rev. A 96, 053810 (2017). URL https:

//link.aps.org/doi/10.1103/PhysRevA.96.053810.
[18] Snijders, H. J. et al. Observation of the uncon-

ventional photon blockade. Phys. Rev. Lett. 121,
043601 (2018). URL https://link.aps.org/doi/10.

1103/PhysRevLett.121.043601.
[19] Vaneph, C. et al. Observation of the unconventional pho-

ton blockade in the microwave domain. Phys. Rev. Lett.
121, 043602 (2018). URL https://link.aps.org/doi/

10.1103/PhysRevLett.121.043602.
[20] Wang, D. et al. Turning a molecule into a coherent two-

level quantum system. Nature Phys. 15, 483–489 (2019).
URL https://doi.org/10.1038/s41567-019-0436-5.

[21] Tomm, N. et al. Realization of a coherent and ef-
ficient one-dimensional atom. Phys. Rev. Lett. 133,
083602 (2024). URL https://link.aps.org/doi/10.

1103/PhysRevLett.133.083602.
[22] Prasad, A. S. et al. Correlating photons using the col-

lective nonlinear response of atoms weakly coupled to an
optical mode. Nature Photon. 14, 719–722 (2020). URL
https://doi.org/10.1038/s41566-020-0692-z.

[23] Cordier, M., Schemmer, M., Schneeweiss, P., Volz, J. &
Rauschenbeutel, A. Tailoring photon statistics with an
atom-based two-photon interferometer. Phys. Rev. Lett.
131, 183601 (2023). URL https://link.aps.org/doi/

10.1103/PhysRevLett.131.183601.
[24] Allen, L. & Eberly, J. Optical Resonance and Two-Level

Atoms (Dover, 1987).
[25] Meystre, P. & Sargent, M. Elements of quantum optics

(Springer Science & Business Media, 2007).
[26] Vogel, W. Squeezing and anomalous moments in

resonance fluorescence. Phys. Rev. Lett. 67, 2450–
2452 (1991). URL https://link.aps.org/doi/10.1103/

PhysRevLett.67.2450.
[27] Breitenbach, G., Schiller, S. & Mlynek, J. Measurement

of the quantum states of squeezed light. Nature 387, 471–
475 (1997). URL https://doi.org/10.1038/387471a0.

[28] Schulte, C. H. H. et al. Quadrature squeezed photons
from a two-level system. Nature 525, 222–225 (2015).
URL https://doi.org/10.1038/nature14868.

[29] Fischer, K. A. et al. Self-homodyne measurement of a
dynamic Mollow triplet in the solid state. Nature Photon.
10, 163–166 (2016). URL https://doi.org/10.1038/

nphoton.2015.276.

[30] Zubizarreta Casalengua, E., López Carreño, J. C.,
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A. System characterization: mean field, fluctuations and driving

In our experimental configuration depicted in Fig. 1(e) in the manuscript, the system σ—the resonance fluorescence
of our TLS—interferes with an external coherent field given by Eq. (4) in the homodyne beam splitter (BS). The two

outputs of the BS are written as s+ =
(
σ +F⟨σ⟩eiϕ

)
/
√
2 and s− =

(
σ −F⟨σ⟩eiϕ

)
/
√
2 with variable phase ϕ. In the

manuscript, the factor of 1/
√
2 is omitted for simplicity. Their intensities are expressed with the TLS operator and

the fluctuation operator as ⟨s±†s±⟩ = 1
2

[
⟨ς†ς⟩+ |⟨σ⟩|2

(
1± 2F cos (ϕ) +F2

)]
, with an interference term varying

with phase and the LO amplitude F. As mentioned in the manuscript, the measured intensities are proportional to
the corresponding quantities. We can express the measured intensities, Is± ∝ ⟨s±†s±⟩, of the two BS outputs as

Is± =
1

2

[
Iς + I⟨σ⟩

(
1± 2F cos (ϕ) +F2

)]
. (16)

One can extract the intensity of the coherent field, I⟨σ⟩ ∝ |⟨σ⟩|2, and that of the fluctuations, Iς ∝ ⟨ς†ς⟩, by examining
the F- and ϕ-dependent admixture signal intensities given by Eq. 16. Experimentally, we drive a piezo stage to
continuously scan the phase, by varying the path length difference between the LO and the emission of the system,
while measuring intensities of the two outputs for a given driving Ω and a constant LO intensity ∝ F2. An exemplary
time-traced counter measurement result of the two outputs for a excitation power of 2µW ∝ Ω2 and a LO intensity
of 189.1 cts/ms is shown in Fig. 5(a). In Eq. (16), the maxima and minima occur with ϕ = nπ, where n is an integer
value. The phase scan with a large range allows us to observe multiple extrema in the results. We evaluate the average
maximum and minimum for the given parameters of F and the excitation power, by considering extrema in every
oscillation period from the whole time-traced measurement. Next, we study the F-dependency of these averaged
maximum and minimum counts for the same driving and present the result in Fig. 5(b). The minima and maxima
are given by red and blue symbols, corresponding to the positive and negative sign in Eq. (16) with ϕ = π. The
equation is used as a fitting function with two fitting parameters Iς and I⟨σ⟩. As a result, we obtain the intensity of
the coherent mean field of the system I⟨σ⟩ ≈ 252.2 cts/ms and that of the fluctuations Iς ≈ 47.5 cts/ms. An excellent

agreement between measured data and solid fitting curves is found in the figure. The driving Ω =
√
(⟨ς†ς⟩)/(8|⟨σ⟩|2)

can be derived from Eq. (3) in the main manuscript. Given the intensities of the two components, a driving Ω ≈ 0.15
is estimated. Similarly, we characterize the system with two different drivings used in the power series of Fig. 4. As a
result, I⟨σ⟩ ≈ 849.7 cts/ms and Iς ≈ 521.4 cts/ms for Ω ≈ 0.28 as well as I⟨σ⟩ ≈ 1193.1 cts/ms and Iς ≈ 1504.0 cts/ms
for Ω ≈ 0.40 are extracted.

B. Analysis of multiphoton correlations

To study the three-photon correlation, we extend the standard Hanbury Brown-Twiss setup with two outputs to the
modified version with three outputs as shown in Fig. 1(e). As mentioned in the manuscript, we characterize G(3)(τ1, τ2)
based on the time difference between photon arrival times at the three detectors. To extract g(3)(τ∗) from the time cor-
relation measurement G(3)(τ1, τ2), we perform an analysis which projects the two-dimensional data (τ1, τ2-dependent)
onto the one-dimensional space (τ∗-dependent). First, the obtained data are transformed from the Cartesian co-
ordinate system with (τ1, τ2) to a polar coordinate system with (τ∗, θ). As an example, the G(3)(τ1, τ2) result for
a driving Ω ≈ 0.15 without the external LO and its transformed data G(3)(τ∗, θ) are shown in Fig. 6(a) and (b),
respectively. For the transformation, we define τ∗ = τ1/ cos θ, where θ is the angle with respect to the τ1 axis in
the Cartesian coordinate system. The transformation allows us to integrate the data along the θ axis, preserving
the time parameter τ∗ which effectively contains time delay information of both τ1 and τ2. Consequently, we can
evaluate G(3)(τ∗), where τ∗ can be interpreted as the effective time delay of three subsequent detection events by all
three detectors. Specifically, we define it as

G(3)(τ∗) =

∫ π/2−ϑ

ϑ

G(3)(τ∗, θ) dθ , (17)
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FIG. 5. (a) Time-traced counts of the two homodyne BS outputs, Is+ and Is−, while scanning phase ϕ continuously with a
constant excitation power of 2µW and a LO intensity of 189.1 cts/ms. (b) The averaged minima Īs±,min and maxima Īs±,max

from phase-scanned measurements with varying LO intensity are shown as blue and red symbols. By fitting the theoretical
model (solid lines) to the experimental data, the intensities of the mean field I⟨σ⟩ ≈ 252.2 cts/ms and fluctuations Iς ≈
47.5 cts/ms as well as the driving Ω ≈ 0.15 are obtained. The dashed line represents the LO intensity, where the results in (a)
are obtained.

where the integration range (ϑ, π/2 − ϑ) is centered at π/4. The integration center angle π/4 corresponds to the
antidiagonal line (τ1 = −τ2) in the Cartisean coordinate system, where the most uncorrelated events occur due to the
largest time difference between τ1 and τ2 for a given τ∗. We carefully choose ϑ = π/12, making the integration range
wide enough to benefit from a large integration window, improvement of signal-to-noise ratio, while still narrow enough
to exclude the three diagonals from the integration, namely, G(3)(0, τ2), G

(3)(τ1, 0) and G(3)(τ1, τ1) lines representing

two-photon coincidences. The normalized correlation is given by g(3)(τ∗) = G(3)(τ∗)/Ḡ
(3)
∞ , where Ḡ

(3)
∞ is the averaged

uncorrelated events at |τ∗| ≫ 0 which are positioned at both ends of G(3)(τ∗).
For the second-order correlation g(2)(τ), we first extract the unnormalized G(2)(τ) by analyzing the same raw time-

tag data which are used for the g(3)(τ∗) analysis. To improve and balance counts, we combine the two channels out
of the three of the extended Hanbury Brown-Twiss setup which are passing two BSs in Fig. 1(e). A cross correlation
analysis is performed on the combined channel with the other to obtain G(2)(τ) . Similar to the normalization step

for g(3)(τ∗), we evaluate g(2)(τ) by dividing G(2)(τ) by Ḡ
(2)
∞ . The standard deviation in the averaged uncorrelated

events Ḡ
(n)
∞ and the Poissonian statistics of G(n)(0) are taken into account to calculate errors of g(n)(0) for n = 2, 3.
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FIG. 6. (a) With time difference of three detector channels, unnormalized third-order correlation G(3)(τ1, τ2) is obtained in
the Cartesian coordinate system under the measurement condition of Ω ≈ 0.15 and F = 0. (b) The result is transformed

in a polar coordinate system as G(3)(τ∗, θ). We perform the radial integration along the θ axis with the integration window
centered ϕ = π/4. Dashed lines represent the limit of integration angles (π/12) and (π/2− π/12).
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